Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Elementos de una matriz con algún vecino menor

Las matrices pueden representarse mediante tablas cuyos índices son pares de números naturales. Su tipo se define por

Por ejemplo, la matriz

se define por

Los vecinos de un elemento son los que están a un paso en la misma fila, columna o diagonal. Por ejemplo, en la matriz anterior, el 1 tiene 8 vecinos (el 9, 4, 6, 8, 7, 4, 2 y 5) pero el 9 sólo tiene 3 vecinos (el 4, 8 y 1).

Definir la función

tal que (algunoMenor p) es la lista de los elementos de p que tienen algún vecino menor que él. Por ejemplo,

pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz.

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Familias de números con algún dígito en común

Una familia de números es una lista de números tal que todos tienen la misma cantidad de dígitos y, además, dichos números tienen al menos un dígito común.

Por ejemplo, los números 72, 32, 25 y 22 pertenecen a la misma familia ya que son números de dos dígitos y todos tienen el dígito 2, mientras que los números 123, 245 y 568 no pertenecen a la misma familia, ya que no hay un dígito que aparezca en los tres números.

Definir la función

tal que (esFamilia ns) se verifica si ns es una familia de números. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

Soluciones

La conjetura de Levy

Hyman Levy observó que

y conjeturó que todos los número impares mayores o iguales que 7 se pueden escribir como la suma de un primo y el doble de un primo. El objetivo de los siguientes ejercicios es comprobar la conjetura de Levy.

Definir las siguientes funciones

tales que

  • (descomposicionesLevy x) es la lista de pares de primos (p,q) tales que x = p + 2q. Por ejemplo,

  • (graficaLevy n) dibuja los puntos (x,y) tales que x pertenece a [7,9..7+2x(n-1)] e y es el número de descomposiciones de Levy de x. Por ejemplo, (graficaLevy 200) dibuja
    La_conjetura_de_Levy-200

Comprobar con QuickCheck la conjetura de Levy.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Dios creó el número natural, y todo el resto es obra del hombre.»

Leopold Kronecker

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El desarrollo de las matemáticas hacia una mayor precisión ha llevado, como es bien sabido, a la formalización de grandes partes de las mismas, de modo que se puede probar cualquier teorema usando nada más que unas pocas reglas mecánicas.»

Kurt Gödel.

Reducción de SAT a Clique

Nota: En este ejercicio se usa la misma notación que en los anteriores importando los módulos

Definir las funciones

tales que

  • (cliquesFNCf) es la lista de los cliques del grafo de f. Por ejemplo,

  • (cliquesCompletos f) es la lista de los cliques del grafo de f que tiene tantos elementos como cláusulas tiene f. Por ejemplo,

  • (esSatisfaciblePorClique f) se verifica si f no contiene la cláusula vacía, tiene más de una cláusula y posee algún clique completo. Por ejemplo,

Comprobar con QuickCheck que toda fórmula en FNC es satisfacible si, y solo si, es satisfacible por Clique.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La resolución de problemas es una habilidad práctica como, digamos, la natación. Adquirimos cualquier habilidad práctica por imitación y práctica. Tratando de nadar, imitas lo que otras personas hacen con sus manos y pies para mantener sus cabezas sobre el agua, y, finalmente, aprendes a nadar practicando la natación. Al intentar resolver problemas, hay que observar e imitar lo que hacen otras personas al resolver problemas y, finalmente, se aprende a resolver problemas haciéndolos.»

George Pólya.

Problema SAT para FNC (fórmulas en forma normal conjuntiva)

Nota: En este ejercicio usaremos las mismas notaciones que en los anteriores importando los módulos import Modelos_de_FNC y Evaluacion_de_FNC

Una FNC (fórmula en forma normal conjuntiva) es satisfacible, si tiene algún modelo. Por ejemplo,

Definir la función

tal que (esSatisfacible f) se verifica si la FNC f es satistacible. Por ejemplo,

Nota: Escribir la solución en el módulo Problema_de_SAT_para_FNC para poderlo usar en los siguientes ejercicios.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Un gran descubrimiento resuelve un gran problema, pero hay un grano de descubrimiento en cualquier problema.»

George Pólya.

Conjetura de Lemoine

La conjetura de Lemoine afirma que

Todos los números impares mayores que 5 se pueden escribir de la forma p + 2q donde p y q son números primos. Por ejemplo, 47 = 13 + 2 x 17

Definir las funciones

tales que

  • (descomposicionesLemoine n) es la lista de pares de primos (p,q) tales que n = p + 2q. Por ejemplo,

  • (graficaLemoine n) dibuja la gráfica de los números de descomposiciones de Lemoine para los números impares menores o iguales que n. Por ejemplo, (graficaLemoine n 400) dibuja

Comprobar con QuickCheck la conjetura de Lemoine.

Nota: Basado en Lemoine’s conjecture

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Todo el mundo sabe lo que es una curva, hasta que ha estudiado suficientes matemáticas para confundirse a través del incontable número de posibles excepciones.»

Felix Klein.

La menos conocida de las conjeturas de Goldbach

Goldbach, el de la famosa conjetura, hizo por lo menos otra conjetura que finalmente resultó ser falsa.

Esta última decía que todo número compuesto impar puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Así por ejemplo,

Definir las sucesiones

tales que

  • imparesCompuestos es la lista de los números impares compuestos. Por ejemplo,

  • (descomposiciones n) es la lista de las descomposiciones de n de n como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,

Las 3 descomposiciones de 21 son

  • contraejemplosGoldbach es la lista de los contraejemplos de la anterior conjetura de Goldbach; es decir, los números impares compuestos que no pueden expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,

Comprobar con QuickCheck que la conjetura de Golbach se verifica a partir de 5993; es decir, todo número compuesto impar mayor que 5993 puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado.

Nota: Basado en el artículo La menos conocida de las conjeturas de Goldbach de Claudio Meller en el blog Números y algo más.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Obvio es la palabra más peligrosa de las matemáticas.»

Eric Temple Bell

Productos de sumas de cuatro cuadrados

Definir la función

tal que (productoSuma4Cuadrados as bs cs ds) es el producto de las sumas de los cuadrados de cada una de las listas que ocupan la misma posición (hasta que alguna se acaba). Por ejemplo,

Comprobar con QuickCheckWith que si as, bs cs y ds son listas no vacías de enteros positivos, entonces (productoSuma4Cuadrados as bs cs ds) se puede escribir como la suma de los cuadrados de cuatro enteros positivos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

¿Vivir? Sencillamente:
la sed y el agua cerca …
o el agua lejos, más, la sed y el agua,
un poco de cansancio ¡y a beberla!.

Antonio Machado

Teorema de la amistad

El teorema de la amistad afirma que

En cualquier reunión de n personas hay al menos dos personas que tienen el mismo número de amigos (suponiendo que la relación de amistad es simétrica).

Se pueden usar las siguientes representaciones:

  • números enteros para representar a las personas,
  • pares de enteros (x,y), con x < y, para representar que la persona x e y son amigas y
  • lista de pares de enteros para representar la reunión junto con las relaciones de amistad.

Por ejemplo, [(2,3),(3,5)] representa una reunión de tres personas
(2, 3 y 5) donde

  • 2 es amiga de 3,
  • 3 es amiga de 2 y 5 y
  • 5 es amiga de 3.
    Si clasificamos las personas poniendo en la misma clase las que tienen el mismo número de amigos, se obtiene [[2,5],[3]] ya que 2 y 5 tienen 1 amigo y 3 tiene 2 amigos.

Definir la función

tal que (clasesAmigos r) es la clasificación según el número de amigos de las personas de la reunión r; es decir, la lista cuyos elementos son las listas de personas con 1 amigo, con 2 amigos y así hasta que se completa todas las personas de la reunión r. Por ejemplo,

Comprobar con QuickCheck el teorema de la amistad; es decir, si r es una lista de pares de enteros, entonces (clasesAmigos r’) donde r’ es la lista de los pares (x,y) de r con x < y y se supone que r’ es no vacía.

Soluciones

Referencia

Pensamiento

Me dijo el agua clara que reía,
bajo el sol, sobre el mármol de la fuente:
si te inquieta el enigma del presente
aprende el son de la salmodia mía.

Antonio Machado

Las conjeturas de Catalan y de Pillai

La conjetura de Catalan, enunciada en 1844 por Eugène Charles Catalan y demostrada 2002 por Preda Mihăilescu1, afirma que

Las únicas dos potencias de números enteros consecutivos son 8 y 9 (que son respectivamente 2³ y 3²).

En otras palabras, la única solución entera de la ecuación

para x, a, y, b > 1 es x = 3, a = 2, y = 2, b = 3.

La conjetura de Pillai, propuesta por S.S. Pillai en 1942, generaliza este resultado y es un problema abierto. Afirma que cada entero se puede escribir sólo un número finito de veces como una diferencia de dos potencias perfectas. En otras palabras, para todo entero positivo n, el conjunto de soluciones de

para x, a, y, b > 1 es finito.

Por ejemplo, para n = 4, hay 3 soluciones

Las soluciones se pueden representar por la menor potencia (en el caso anterior, por 4, 32 y 121) ya que dado n (en el caso anterior es 4), la potencia mayor es la menor más n.

Definir las funciones

tales que

  • potenciasPerfectas es la lista de las potencias perfectas (es decir, de los números de la forma x^a con x y a mayores que 1). Por ejemplo,

  • (solucionesPillati n) es la lista de las menores potencias de las soluciones de la ecuación de Pillati x^a – y^b = n; es decir, es la lista de los u tales que u y u+n son potencias perfectas. Por ejemplo,

  • (solucionesPillatiAcotadas c n) es la lista de elementos de (solucionesPillati n) menores que n. Por ejemplo,

Soluciones

Referencia

Pensamiento

Y te enviaré mi canción:
«Se canta lo que se pierde»,
con un papagayo verde
que la diga en tu balcón.

Antonio Machado

Teorema de existencia de divisores

El teorema de existencia de divisores afirma que

En cualquier subconjunto de {1, 2, …, 2m} con al menos m+1 elementos existen números distintos a, b tales que a divide a b.

Un conjunto de números naturales xs es mayoritario si existe un m tal que la lista de xs es un subconjunto de {1,2,…,2m} con al menos m+1 elementos. Por ejemplo, {2,3,5,6} porque es un subconjunto de {1,2,…,6} con más de 3 elementos.

Definir las funciones

tales que

  • (divisores xs) es la lista de pares de elementos distintos de (a,b) tales que a divide a b. Por ejemplo,

  • (esMayoritario xs) se verifica xs es mayoritario. Por ejemplo,

Comprobar con QuickCheck el teorema de existencia de divisores; es decir, en cualquier conjunto mayoritario existen números distintos a, b tales que a divide a b. Para la comprobación se puede usar el siguiente generador de conjuntos mayoritarios

con lo que la propiedad que hay que comprobar con QuickCheck es

Soluciones

Pensamiento

Guiomar, Guiomar,
mírame en ti castigado:
reo de haberte creado,
ya no te puedo olvidar.

Antonio Machado

Teorema de Hilbert-Waring

El problema de Waring, propuesto por Edward Waring consiste en déterminar si, para cada número entero k mayor que 1, existe un número n tal que todo entero positivo se puede escribir como una suma de k-potencias de números positivos con n sumandos como máximo.

La respuesta afirmativa al problema, aportada por David Hilbert, se conoce como el teorema de Hilbert-Waring. Su enunciado es

Para cada número entero k, con k ≥ 2, existe un entero positivo g(k) tal que todo entero positivo se puede expresar como una suma de a lo más g(k) k-ésimas potencias.

Definir las funciones

tales que

  • (descomposiciones x k n) es la lista de descomposiciones de x como suma de n potencias con exponente k de números enteros positivos.

  • (orden x k) es el menor número de sumandos necesario para expresar x como suma de k-ésimas potencias. Por ejemplo,

Comprobar el teorema de Hilbert-Waring para k hasta 7; es decir, para todo número x positivo se verifica que

y, en general,

Soluciones

Referencia

Pensamiento

¡Y en la tersa arena,
cerca de la mar,
tu carne rosa y morena,
súbitamente Guiomar!

Antonio Machado

Conjetura de Grimm

La conjetura de Grimm establece que a cada elemento de un conjunto de números compuestos consecutivos se puede asignar un número primo que lo divide, de forma que cada uno de los números primos elegidos es distinto de todos los demás. Más formalmente, si n+1, n+2, …, n+k son números compuestos, entonces existen números primos p(i), distintos entre sí, tales que p(i) divide a n+i para 1 ≤ i ≤ k.

Diremos que la lista ps = [p(1),…,p(k)] es una sucesión de Grim para la lista xs = [x(1),…,x(k)] si p(i) son números primos distintos y p(i) divide a x(i), para 1 ≤ i ≤ k. Por ejemplo, 2, 5, 13, 3, 7 es una sucesión de Grim de 24, 25, 26, 27, 28.

Definir las funciones

tales que

  • (compuestos n) es la mayor lista de números enteros consecutivos empezando en n. Por ejemplo,

  • (sucesionesDeGrim xs) es la lista de las sucesiones de Grim de xs. Por ejemplo,

Comprobar con QuickCheck la conjetura de Grim; es decir, para todo número n > 1, (sucesionesDeGrim (compuestos n)) es una lista no vacía.

Soluciones

Pensamiento

De encinar en encinar
se va fatigando el día.

Antonio Machado

Teorema de Carmichael

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comieanza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

El teorema de Carmichael establece que para todo n mayor que 12, el n-ésimo número de Fibonacci F(n) tiene al menos un factor primo que no es factor de ninguno de los términos anteriores de la sucesión.

Si un número primo p es un factor de F(n) y no es factor de ningún F(m) con m < n, entonces se dice que p es un factor característico o un divisor primitivo de F(n).

Definir la función

tal que (factoresCaracteristicos n) es la lista de los factores característicos de F(n). Por ejemplo,

Comprobar con QuickCheck el teorema de Carmichael; es decir, para todo número entero (factoresCaracteristicos (13 + abs n)) es una lista no vacía.

Soluciones

Pensamiento

No puede ser
amor de tanta fortuna:
dos soledades en una.

Antonio Machado

Infinitud de primos gemelos

Un par de números primos (p,q) es un par de números primos gemelos si su distancia de 2; es decir, si q = p+2. Por ejemplo, (17,19) es una par de números primos gemelos.

La conjetura de los primos gemelos postula la existencia de infinitos pares de primos gemelos.

Definir la constante

tal que sus elementos son los pares de primos gemelos. Por ejemplo,

Comprobar con QuickCheck la conjetura de los primos gemelos.

Soluciones

Pensamiento

El sentimiento ha de tener tanto de individual como de genérico; debe orientarse hacia valores universales, o que pretenden serlo.

Antonio Machado

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Pensamiento

Era una noche del mes
de mayo, azul y serena.
Sobre el agudo ciprés
brillaba la luna llena.

Antonio Machado

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

Soluciones

Pensamiento

Mi corazón está donde ha nacido,
no a la vida, al amor, cerca del Duero.

Antonio Machado

Árboles cuyas ramas cumplen una propiedad

Los árboles se pueden representar mediante el siguiente tipo de dato

Por ejemplo, los árboles

se representan por

Definir la función

tal que (todasDesdeAlguno p ar) se verifica si para toda rama existe un elemento a partir del cual todos los elementos de la rama verifican la propiedad p. Por ejemplo,

Soluciones

Pensamiento

Por dar al viento trabajo,
cosía con hilo doble
las hojas secas del árbol.

Antonio Machado

Mezcla de listas

Definir la función

tal que (mezcla xss) es la lista tomando sucesivamente los elementos de xss en la misma posición. Cuando una de las listas de xss es vacía, se continua con las restantes. por ejemplo,

Soluciones

Pensamiento

Cuatro cosas tiene el hombre
que no sirven en la mar:
ancla, gobernalle y remos,
y miedo de naufragar.

Antonio Machado

Ternas euclídeas

Uno de los problemas planteados por Euclides en los Elementos consiste en encontrar tres números tales que cada uno de sus productos, dos a dos, aumentados en la unidad sea un cuadrado perfecto.

Diremos que (x,y,z) es una terna euclídea si es una solución del problema; es decir, si x <= y <= z y xy+1, yz+1 y zx+1 son cuadrados. Por ejemplo, (4,6,20) es una terna euclídea ya que

Definir la funciones

tales que

  • ternasEuclideas es la lista de las ternas euclídeas. Por ejemplo,

  • (esMayorDeTernaEuclidea z) se verifica si existen x, y tales que (x,y,z) es una terna euclídea. Por ejemplo,

Comprobar con QuickCheck que z es el mayor de una terna euclídea si, y sólo si, existe un número natural x tal que 1 < x < z – 1 y x^2 es congruente con 1 módulo z.

Soluciones

Pensamiento

Todo pasa y todo queda,
pero lo nuestro es pasar,
pasar haciendo caminos,
caminos sobre la mar.

Antonio Machado

Triángulo de Pascal binario

Los triángulos binarios de Pascal se formas a partir de una lista de ceros y unos usando las reglas del triángulo de Pascal, donde cada uno de los números es suma módulo dos de los dos situados en diagonal por encima suyo. Por ejemplo, los triángulos binarios de Pascal correspondientes a [1,0,1,1,1] y [1,0,1,1,0] son

Sus finales, desde el extremo inferior al extremos superior derecho, son [0,1,0,0,1] y [1,0,1,1,0], respectivamente.

Una lista es Pascal capicúa si es igual a los finales de su triángulo binario de Pascal. Por ejemplo, [1,0,1,1,0] es Pascal capicúa.

Definir las funciones

tales que

  • (trianguloPascalBinario xs) es el triágulo binario de Pascal correspondiente a la lista xs. Por ejemplo,

  • (pascalCapicuas n) es la lista de listas de Pascal capicúas de n elementos. Por ejemplo,

  • (nPascalCapicuas n) es el número de listas de Pascal capicúas de n elementos. Por ejemplo,

Soluciones

Pensamiento

La envidia de la virtud
hizo a Caín criminal.
¡Gloria a Caín! Hoy el vicio
es lo que se envidia más.

Antonio Machado

Recorrido de árboles en espiral

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (espiral x) es la lista de los nodos del árbol x recorridos en espiral; es decir, la raíz de x, los nodos del primer nivel de izquierda a derecha, los nodos del segundo nivel de derecha a izquierda y así sucesivamente. Por ejemplo,

Soluciones

Pensamiento

Dice la monotonía
del agua clara al caer:
un día es como otro día;
hoy es lo mismo que ayer.

Antonio Machado

El 2019 es semiprimo

Un número semiprimo es un número natural que es producto de dos números primos no necesariamente distintos. Por ejemplo, 26 es semiprimo (porque 26 = 2×13) y 49 también lo es (porque 49 = 7×7).

Definir las funciones

tales que

  • (esSemiprimo n) se verifica si n es semiprimo. Por ejemplo,

  • semiprimos es la sucesión de números semiprimos. Por ejemplo,

Soluciones

Pensamiento

Porque toda visión requiere distancia, no hay manera de ver las cosas sin salirse de ellas.

Antonio Machado

Divisores compuestos

Definir la función

tal que (divisoresCompuestos x) es la lista de los divisores de x que son números compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

Soluciones

Pensamiento

«La verdad del hombre empieza donde acaba su propia tontería, pero la
tontería del hombre es inagotable.»

Antonio Machado

Grado exponencial

El grado exponencial de un número n es el menor número x mayor que 1 tal que n es una subcadena de n^x. Por ejemplo, el grado exponencial de 2 es 5 ya que 2 es una subcadena de 32 (que es 2^5) y no es subcadena de las anteriores potencias de 2 (2, 4 y 16). El grado exponencial de 25 es 2 porque 25 es una subcadena de 625 (que es 25^2).

Definir la función

tal que (gradoExponencial n) es el grado exponencial de n. Por ejemplo,

Soluciones

Referencia

Basado en la sucesión A045537 de la OEIS.

Pensamiento

«De cada diez novedades que pretenden descubrirnos, nueve son
tonterías. La décima y última, que no es necedad, resulta a última hora
que tampoco es nueva.»

Antonio Machado

Reconocimiento de particiones

Una partición de un conjunto es una división del mismo en subconjuntos disjuntos no vacíos.

Definir la función

tal que (esParticion xss) se verifica si xss es una partición; es decir sus elementos son listas no vacías disjuntas. Por ejemplo.

Soluciones

Pensamiento

Sentía los cuatro vientos,
en la encrucijada
de su pensamiento.

Antonio Machado