Menu Close

Etiqueta: not

La menos conocida de las conjeturas de Goldbach

Goldbach, el de la famosa conjetura, hizo por lo menos otra conjetura que finalmente resultó ser falsa.

Esta última decía que todo número compuesto impar puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Así por ejemplo,

    9 =  7 + 2×1^2
   15 =  7 + 2×2^2
   21 =  3 + 2×3^2
   25 =  7 + 2×3^2
   27 = 19 + 2×2^2
   33 = 31 + 2×1^2

Definir las sucesiones

   imparesCompuestos :: [Integer]
   descomposiciones :: Integer -> [(Integer,Integer)]
   contraejemplosGoldbach :: [Integer]

tales que

  • imparesCompuestos es la lista de los números impares compuestos. Por ejemplo,
     take 9 imparesCompuestos  ==  [9,15,21,25,27,33,35,39,45]
  • (descomposiciones n) es la lista de las descomposiciones de n de n como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,
     descomposiciones 9     ==  [(7,1)]
     descomposiciones 21    ==  [(3,9),(13,4),(19,1)]
     descomposiciones 5777  ==  []

Las 3 descomposiciones de 21 son

     21 =  3 + 2*9 = 21 + 2*3^2
     21 = 13 + 2*4 = 13 + 2*3^2
     21 = 19 + 2*1 = 19 + 2*1^2
  • contraejemplosGoldbach es la lista de los contraejemplos de la anterior conjetura de Goldbach; es decir, los números impares compuestos que no pueden expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,
   take 2 contraejemplosGoldbach  ==  [5777,5993]

Comprobar con QuickCheck que la conjetura de Golbach se verifica a partir de 5993; es decir, todo número compuesto impar mayor que 5993 puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado.

Nota: Basado en el artículo La menos conocida de las conjeturas de Goldbach de Claudio Meller en el blog Números y algo más.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
 
imparesCompuestos :: [Integer]
imparesCompuestos = filter esCompuesto [3,5..]
 
-- (esCompuesto x) se verifica si x es un número compuesto. Por ejemplo,
--    esCompuesto 6  ==  True
--    esCompuesto 7  ==  False
esCompuesto :: Integer -> Bool
esCompuesto = not . isPrime
 
contraejemplosGoldbach :: [Integer]
contraejemplosGoldbach = filter esContraejemplo imparesCompuestos
 
-- (esContraejemplo x) es verifica si el número impar compuesto x es un
-- contraejemplo de la conjetura de Goldbach. Por ejemplo,
--    esContraejemplo 5777  ==  True
--    esContraejemplo 15    ==  False
esContraejemplo :: Integer -> Bool
esContraejemplo = null . descomposiciones
 
descomposiciones :: Integer -> [(Integer,Integer)]
descomposiciones n =
  [(p,x) | p <- takeWhile (<=n) primes
         , (n - p) `mod` 2 == 0
         , let x = (n - p) `div` 2
         , esCuadrado x]
 
-- (esCuadrado x) es verifica si x es un cuadrado perfecto. Por ejemplo, 
--    esCuadrado 16  ==  True
--    esCuadrado 27  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x = y^2 == x
  where y = ceiling (sqrt (fromIntegral x))
 
-- La propiedad es
prop_conjetura :: Int -> Property
prop_conjetura n =
  n >= 0 ==> not (esContraejemplo (imparesCompuestosMayore5993 !! n))
  where imparesCompuestosMayore5993 = dropWhile (<=5993) imparesCompuestos
 
-- La comprobación es
--    λ> quickCheck prop_conjetura
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Obvio es la palabra más peligrosa de las matemáticas.”

Eric Temple Bell

Productos de sumas de cuatro cuadrados

Definir la función

   productoSuma4Cuadrados :: Integral a => [a] -> [a] -> [a] -> [a] -> a

tal que (productoSuma4Cuadrados as bs cs ds) es el producto de las sumas de los cuadrados de cada una de las listas que ocupan la misma posición (hasta que alguna se acaba). Por ejemplo,

   productoSuma4Cuadrados [2,3] [1,5] [4,6] [0,3,9]
   = (2² + 1² + 4² + 0²) * (3² + 5² + 6² + 3²)
   = (4 +  1 + 16  + 0)  * (9 + 25 + 36  + 9)
   = 1659

Comprobar con QuickCheckWith que si as, bs cs y ds son listas no vacías de enteros positivos, entonces (productoSuma4Cuadrados as bs cs ds) se puede escribir como la suma de los cuadrados de cuatro enteros positivos.

Soluciones

import Data.List (zip4)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
productoSuma4Cuadrados :: Integral a => [a] -> [a] -> [a] -> [a] -> a
productoSuma4Cuadrados (a:as) (b:bs) (c:cs) (d:ds) =
  (a^2+b^2+c^2+d^2) * productoSuma4Cuadrados as bs cs ds
productoSuma4Cuadrados _ _ _ _ = 1
 
-- 2ª solución
-- ===========
 
productoSuma4Cuadrados2 :: Integral a => [a] -> [a] -> [a] -> [a] -> a
productoSuma4Cuadrados2 as bs cs ds =
  product [a^2 + b^2 + c^2 + d^2 | (a,b,c,d) <- zip4 as bs cs ds]
 
-- Propiedad
-- =========
 
-- La propiedad es
prop_productoSuma4Cuadrados ::
  [Integer] -> [Integer] -> [Integer] -> [Integer] -> Property
prop_productoSuma4Cuadrados as bs cs ds =
  all (not . null) [as, bs, cs, ds]
  ==> 
  esSuma4Cuadrados (productoSuma4Cuadrados as' bs' cs' ds')
  where as' = [1 + abs a | a <- as]
        bs' = [1 + abs b | b <- bs]
        cs' = [1 + abs c | c <- cs]
        ds' = [1 + abs d | d <- ds]
 
-- (esSuma4Cuadrados n) se verifica si n es la suma de 4 cuadrados. Por
-- ejemplo, 
--    esSuma4Cuadrados 42  ==  True
--    esSuma4Cuadrados 11  ==  False
--    esSuma4Cuadrados 41  ==  False
esSuma4Cuadrados :: Integer -> Bool
esSuma4Cuadrados = not . null . sumas4Cuadrados
 
-- (sumas4Cuadrados n) es la lista de las descomposiciones de n como
-- sumas de 4 cuadrados. Por ejemplo,
--    sumas4Cuadrados 42  ==  [(16,16,9,1),(25,9,4,4),(36,4,1,1)]
sumas4Cuadrados :: Integer -> [(Integer,Integer,Integer,Integer)]
sumas4Cuadrados n =
  [(a^2,b^2,c^2,d) | a <- [1 .. floor (sqrt (fromIntegral n / 4))]
                   , b <- [a .. floor (sqrt (fromIntegral (n-a^2) / 3))]
                   , c <- [b .. floor (sqrt (fromIntegral (n-a^2-b^2) / 2))]
                   , let d = n - a^2 - b^2 - c^2
                   , c^2 <= d 
                   , esCuadrado d]
 
-- (esCuadrado x) se verifica si x es un número al cuadrado. Por
-- ejemplo,
--    esCuadrado 25  ==  True
--    esCuadrado 26  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x = x == y * y
  where y = raiz x
 
-- (raiz x) es la raíz cuadrada entera de x. Por ejemplo,
--    raiz 25  ==  5
--    raiz 24  ==  4
--    raiz 26  ==  5
raiz :: Integer -> Integer
raiz x = floor (sqrt (fromIntegral x))
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=5}) prop_productoSuma4Cuadrados
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

¿Vivir? Sencillamente:
la sed y el agua cerca …
o el agua lejos, más, la sed y el agua,
un poco de cansancio ¡y a beberla!.

Antonio Machado

Teorema de la amistad

El teorema de la amistad afirma que

En cualquier reunión de n personas hay al menos dos personas que tienen el mismo número de amigos (suponiendo que la relación de amistad es simétrica).

Se pueden usar las siguientes representaciones:

  • números enteros para representar a las personas,
  • pares de enteros (x,y), con x < y, para representar que la persona x e y son amigas y
  • lista de pares de enteros para representar la reunión junto con las relaciones de amistad.

Por ejemplo, [(2,3),(3,5)] representa una reunión de tres personas
(2, 3 y 5) donde

  • 2 es amiga de 3,
  • 3 es amiga de 2 y 5 y
  • 5 es amiga de 3.
    Si clasificamos las personas poniendo en la misma clase las que tienen el mismo número de amigos, se obtiene [[2,5],[3]] ya que 2 y 5 tienen 1 amigo y 3 tiene 2 amigos.

Definir la función

   clasesAmigos :: [(Int,Int)] -> [[Int]]

tal que (clasesAmigos r) es la clasificación según el número de amigos de las personas de la reunión r; es decir, la lista cuyos elementos son las listas de personas con 1 amigo, con 2 amigos y así hasta que se completa todas las personas de la reunión r. Por ejemplo,

   clasesAmigos [(2,3),(3,5)]            ==  [[2,5],[3]]
   clasesAmigos [(2,3),(4,5)]            ==  [[2,3,4,5]]
   clasesAmigos [(2,3),(2,5),(3,5)]      ==  [[2,3,5]]
   clasesAmigos [(2,3),(3,4),(2,5)]      ==  [[4,5],[2,3]]
   clasesAmigos [(x,x+1) | x <- [1..5]]  ==  [[1,6],[2,3,4,5]]
   length (clasesAmigos [(x,x+1) | x <- [1..2020]]) == 2

Comprobar con QuickCheck el teorema de la amistad; es decir, si r es una lista de pares de enteros, entonces (clasesAmigos r’) donde r’ es la lista de los pares (x,y) de r con x < y y se supone que r’ es no vacía.

Soluciones

import Data.List (nub, sort)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
clasesAmigos :: [(Int,Int)] -> [[Int]]
clasesAmigos ps =
  filter (not . null)
         [[x | x <- xs, numeroDeAmigos ps x == n] | n <- [1..length xs]] 
  where xs = personas ps
 
-- (personas ps) es la lista de personas en la reunión ps. Por ejemplo,
--    personas [(2,3),(3,5)]  ==  [2,3,5]
personas :: [(Int,Int)] -> [Int]
personas ps = sort (nub (map fst ps ++ map snd ps))
 
-- (numeroDeAmigos ps x) es el número de amigos de x en la reunión
-- ps. Por ejemplo, 
--    numeroDeAmigos [(2,3),(3,5)] 2  ==  1
--    numeroDeAmigos [(2,3),(3,5)] 3  ==  2
--    numeroDeAmigos [(2,3),(3,5)] 5  ==  1
numeroDeAmigos :: [(Int,Int)] -> Int -> Int
numeroDeAmigos ps x = length (amigos ps x)
 
-- (amigos ps x) es la lista de los amigos de x en la reunión ps. Por
-- ejemplo, 
--    amigos [(2,3),(3,5)] 2  ==  [3]
--    amigos [(2,3),(3,5)] 3  ==  [5,2]
--    amigos [(2,3),(3,5)] 5  ==  [3]
amigos :: [(Int,Int)] -> Int -> [Int]
amigos ps x =
  nub ([b | (a,b) <- ps, a == x] ++ [a | (a,b) <- ps, b == x])
 
-- 2ª solución
-- ===========
 
clasesAmigos2 :: [(Int,Int)] -> [[Int]]
clasesAmigos2 = clases . sort . tablaAmigos
  where
    clases [] = []
    clases ps@((x,y):ps') = (map snd (takeWhile (\(a,b) -> a == x) ps)) :
                            clases (dropWhile (\(a,b) -> a == x) ps')
 
-- (tablaAmigos ps) es la lista de pares (a,b) tales que b es una
-- persona de la reunión ps y a es su número de amigos. Por ejemplo,
--    tablaAmigos [(2,3),(3,5)]   ==  [(1,2),(2,3),(1,5)]
tablaAmigos :: [(Int,Int)] -> [(Int,Int)]
tablaAmigos ps = [(numeroDeAmigos ps x,x) | x <- personas ps]
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_equivalencia :: [(Int,Int)] -> Property
prop_equivalencia ps =
  not (null ps')
  ==> 
  clasesAmigos ps' == clasesAmigos2 ps'
  where ps' = [(x,y) | (x,y) <- ps, x < y]
 
-- La comprobación es
--    λ> quickCheck prop_equivalencia
--    +++ OK, passed 100 tests.
--    (1.06 secs, 337,106,752 bytes)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> length (clasesAmigos [(x,x+1) | x <- [1..200]]) 
--    2
--    (2.37 secs, 804,402,848 bytes)
--    λ> length (clasesAmigos2 [(x,x+1) | x <- [1..200]]) 
--    2
--    (0.02 secs, 4,287,256 bytes)
 
-- El teorema de la amistad
-- ========================
 
-- La propiedad es
teoremaDeLaAmistad :: [(Int,Int)] -> Property
teoremaDeLaAmistad ps =
  not (null ps')
  ==> 
  not (null [xs | xs <- clasesAmigos2 ps', length xs > 1])
  where ps' = [(x,y) | (x,y) <- ps, x < y]
 
-- La comprobación es
--    λ> quickCheck teoremaDeLaAmistad
--    +++ OK, passed 100 tests.

Referencia

Pensamiento

Me dijo el agua clara que reía,
bajo el sol, sobre el mármol de la fuente:
si te inquieta el enigma del presente
aprende el son de la salmodia mía.

Antonio Machado

Las conjeturas de Catalan y de Pillai

La conjetura de Catalan, enunciada en 1844 por Eugène Charles Catalan y demostrada 2002 por Preda Mihăilescu1, afirma que

Las únicas dos potencias de números enteros consecutivos son 8 y 9 (que son respectivamente 2³ y 3²).

En otras palabras, la única solución entera de la ecuación

   x^a - y^b = 1

para x, a, y, b > 1 es x = 3, a = 2, y = 2, b = 3.

La conjetura de Pillai, propuesta por S.S. Pillai en 1942, generaliza este resultado y es un problema abierto. Afirma que cada entero se puede escribir sólo un número finito de veces como una diferencia de dos potencias perfectas. En otras palabras, para todo entero positivo n, el conjunto de soluciones de

   x^a - y^b = n

para x, a, y, b > 1 es finito.

Por ejemplo, para n = 4, hay 3 soluciones

   (2,3, 2,2) ya que 2³ -  2² =   8 -   4 = 4
   (6,2, 2,5) ya que 6² -  2⁵ =  36 -  32 = 4
   (5,3,11,2) ya que 5³ - 11² = 125 - 121 = 4

Las soluciones se pueden representar por la menor potencia (en el caso anterior, por 4, 32 y 121) ya que dado n (en el caso anterior es 4), la potencia mayor es la menor más n.

Definir las funciones

   potenciasPerfectas :: [Integer]
   solucionesPillati :: Integer -> [Integer]
   solucionesPillatiAcotadas :: Integer -> Integer -> [Integer]

tales que

  • potenciasPerfectas es la lista de las potencias perfectas (es decir, de los números de la forma x^a con x y a mayores que 1). Por ejemplo,
     take 10 potenciasPerfectas  ==  [4,8,9,16,25,27,32,36,49,64]
     potenciasPerfectas !! 200   ==  28224
  • (solucionesPillati n) es la lista de las menores potencias de las soluciones de la ecuación de Pillati x^a – y^b = n; es decir, es la lista de los u tales que u y u+n son potencias perfectas. Por ejemplo,
     take 3 (solucionesPillati 4)  ==  [4,32,121]
     take 2 (solucionesPillati 5)  ==  [4,27]
     take 4 (solucionesPillati 7)  ==  [9,25,121,32761]
  • (solucionesPillatiAcotadas c n) es la lista de elementos de (solucionesPillati n) menores que n. Por ejemplo,
     solucionesPillatiAcotadas (10^3) 1  ==  [8]
     solucionesPillatiAcotadas (10^3) 2  ==  [25]
     solucionesPillatiAcotadas (10^3) 3  ==  [125]
     solucionesPillatiAcotadas (10^3) 4  ==  [4,32,121]
     solucionesPillatiAcotadas (10^3) 5  ==  [4,27]
     solucionesPillatiAcotadas (10^3) 6  ==  []
     solucionesPillatiAcotadas (10^3) 7  ==  [9,25,121]
     solucionesPillatiAcotadas (10^5) 7  ==  [9,25,121,32761]

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
 
-- Definiciones de potenciasPerfectas
-- ==================================
 
-- 1ª definición
-- -------------
 
potenciasPerfectas1 :: [Integer]
potenciasPerfectas1 = filter esPotenciaPerfecta [4..]
 
-- (esPotenciaPerfecta x) se verifica si x es una potencia perfecta. Por
-- ejemplo, 
--    esPotenciaPerfecta 36  ==  True
--    esPotenciaPerfecta 72  ==  False
esPotenciaPerfecta :: Integer -> Bool
esPotenciaPerfecta = not . null. potenciasPerfectasDe 
 
-- (potenciasPerfectasDe x) es la lista de pares (a,b) tales que 
-- x = a^b. Por ejemplo,
--    potenciasPerfectasDe 64  ==  [(2,6),(4,3),(8,2)]
--    potenciasPerfectasDe 72  ==  []
potenciasPerfectasDe :: Integer -> [(Integer,Integer)]
potenciasPerfectasDe n = 
    [(m,k) | m <- takeWhile (\x -> x*x <= n) [2..]
           , k <- takeWhile (\x -> m^x <= n) [2..]
           , m^k == n]
 
-- 2ª definición
-- -------------
 
potenciasPerfectas2 :: [Integer]
potenciasPerfectas2 = [x | x <- [4..], esPotenciaPerfecta2 x]
 
-- (esPotenciaPerfecta2 x) se verifica si x es una potencia perfecta. Por
-- ejemplo, 
--    esPotenciaPerfecta2 36  ==  True
--    esPotenciaPerfecta2 72  ==  False
esPotenciaPerfecta2 :: Integer -> Bool
esPotenciaPerfecta2 x = mcd (exponentes x) > 1
 
-- (exponentes x) es la lista de los exponentes de l factorización prima
-- de x. Por ejemplos,
--    exponentes 36  ==  [2,2]
--    exponentes 72  ==  [3,2]
exponentes :: Integer -> [Int]
exponentes x = [length ys | ys <- group (primeFactors x)] 
 
-- (mcd xs) es el máximo común divisor de la lista xs. Por ejemplo,
--    mcd [4,6,10]  ==  2
--    mcd [4,5,10]  ==  1
mcd :: [Int] -> Int
mcd = foldl1 gcd
 
-- 3ª definición
-- -------------
 
potenciasPerfectas3 :: [Integer]
potenciasPerfectas3 = mezclaTodas potencias
 
-- potencias es la lista las listas de potencias de todos los números
-- mayores que 1 con exponentes mayores que 1. Por ejemplo,
--    λ> map (take 3) (take 4 potencias)
--    [[4,8,16],[9,27,81],[16,64,256],[25,125,625]]
potencias :: [[Integer]]
potencias = [[n^k | k <- [2..]] | n <- [2..]]
 
-- (mezclaTodas xss) es la mezcla ordenada sin repeticiones de las
-- listas ordenadas xss. Por ejemplo,
--    take 7 (mezclaTodas potencias)  ==  [4,8,9,16,25,27,32]
mezclaTodas :: Ord a => [[a]] -> [a]
mezclaTodas = foldr1 xmezcla
  where xmezcla (x:xs) ys = x : mezcla xs ys
 
-- (mezcla xs ys) es la mezcla ordenada sin repeticiones de las
-- listas ordenadas xs e ys. Por ejemplo,
--    take 7 (mezcla [2,5..] [4,6..])  ==  [2,4,5,6,8,10,11]
mezcla :: Ord a => [a] -> [a] -> [a]
mezcla (x:xs) (y:ys) | x < y  = x : mezcla xs (y:ys)
                     | x == y = x : mezcla xs ys
                     | x > y  = y : mezcla (x:xs) ys
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> potenciasPerfectas1 !! 200
--    28224
--    (7.24 secs, 9,245,991,160 bytes)
--    λ> potenciasPerfectas2 !! 200
--    28224
--    (0.30 secs, 814,597,152 bytes)
--    λ> potenciasPerfectas3 !! 200
--    28224
--    (0.01 secs, 7,061,120 bytes)
 
-- En lo que sigue se usa la 3ª definición
potenciasPerfectas :: [Integer]
potenciasPerfectas = potenciasPerfectas3
 
-- Definición de solucionesPillati
-- ===============================
 
solucionesPillati :: Integer -> [Integer]
solucionesPillati n =
  [x | x <- potenciasPerfectas
     , esPotenciaPerfecta2 (x+n)]
 
-- Definición de solucionesPillatiAcotadas
-- =======================================
 
solucionesPillatiAcotadas :: Integer -> Integer -> [Integer]
solucionesPillatiAcotadas c n =
  [x | x <- takeWhile (< (c-n)) potenciasPerfectas
     , esPotenciaPerfecta2 (x+n)]

Referencia

Pensamiento

Y te enviaré mi canción:
“Se canta lo que se pierde”,
con un papagayo verde
que la diga en tu balcón.

Antonio Machado

Teorema de existencia de divisores

El teorema de existencia de divisores afirma que

En cualquier subconjunto de {1, 2, …, 2m} con al menos m+1 elementos existen números distintos a, b tales que a divide a b.

Un conjunto de números naturales xs es mayoritario si existe un m tal que la lista de xs es un subconjunto de {1,2,…,2m} con al menos m+1 elementos. Por ejemplo, {2,3,5,6} porque es un subconjunto de {1,2,…,6} con más de 3 elementos.

Definir las funciones

   divisoresMultiplos :: [Integer] -> [(Integer,Integer)]
   esMayoritario :: [Integer] -> Bool

tales que

  • (divisores xs) es la lista de pares de elementos distintos de (a,b) tales que a divide a b. Por ejemplo,
     divisoresMultiplos [2,3,5,6]  ==  [(2,6),(3,6)]
     divisoresMultiplos [2,3,5]    ==  []
     divisoresMultiplos [4..8]     ==  [(4,8)]
  • (esMayoritario xs) se verifica xs es mayoritario. Por ejemplo,
     esMayoritario [2,3,5,6]  ==  True
     esMayoritario [2,3,5]    ==  False

Comprobar con QuickCheck el teorema de existencia de divisores; es decir, en cualquier conjunto mayoritario existen números distintos a, b tales que a divide a b. Para la comprobación se puede usar el siguiente generador de conjuntos mayoritarios

   mayoritario :: Gen [Integer]
   mayoritario = do
     m' <- arbitrary
     let m = 1 + abs m'
     xs' <- sublistOf [1..2*m] `suchThat` (\ys -> genericLength ys > m)
     return xs'

con lo que la propiedad que hay que comprobar con QuickCheck es

   teorema_de_existencia_de_divisores :: Property
   teorema_de_existencia_de_divisores =
     forAll mayoritario (not . null . divisoresMultiplos)

Soluciones

import Data.List (genericLength)
import Test.QuickCheck
 
divisoresMultiplos :: [Integer] -> [(Integer,Integer)]
divisoresMultiplos xs =
  [(x,y) | x <- xs
         , y <- xs
         , y /= x
         , y `mod` x == 0]
 
esMayoritario :: [Integer] -> Bool
esMayoritario xs =
  not (null xs) && length xs > ceiling (n / 2) 
  where n = fromIntegral (maximum xs)
 
-- Comprobación del teorema
-- ========================
 
-- La propiedad es
teorema_de_existencia_de_divisores :: Property
teorema_de_existencia_de_divisores =
  forAll mayoritario (not . null . divisoresMultiplos)
 
-- mayoritario es un generador de conjuntos mayoritarios. Por ejemplo, 
--    λ> sample mayoritario
--    [1,2]
--    [2,5,7,8]
--    [1,2,8,10,14]
--    [3,8,11,12,13,15,18,19,22,23,25,26]
--    [1,3,4,6]
--    [3,6,9,11,12,14,17,19]
mayoritario :: Gen [Integer]
mayoritario = do
  m' <- arbitrary
  let m = 1 + abs m'
  xs' <- sublistOf [1..2*m] `suchThat` (\ys -> genericLength ys > m)
  return xs'
 
-- La comprobación es
--    λ> quickCheck teorema_de_existencia_de_divisores
--    +++ OK, passed 100 tests.

Pensamiento

Guiomar, Guiomar,
mírame en ti castigado:
reo de haberte creado,
ya no te puedo olvidar.

Antonio Machado