Menu Close

Área de la corona circular

Definir la función

   areaDeCoronaCircular :: Double -> Double -> Double

tal que (areaDeCoronaCircular r1 r2) es el área de una corona circular de radio interior r1 y radio exterior r2. Por ejemplo,

   areaDeCoronaCircular 1 2 == 9.42477796076938
   areaDeCoronaCircular 2 5 == 65.97344572538566
   areaDeCoronaCircular 3 5 == 50.26548245743669

Suma de monedas

Definir la función

   sumaMonedas :: Int -> Int -> Int -> Int -> Int -> Int

tal que (sumaMonedas a b c d e) es la suma de los euros correspondientes a a monedas de 1 euro, b de 2 euros, c de 5 euros, d de 10 euros y e de 20 euros. Por ejemplo,

   sumaMonedas 0 0 0 0 1  ==  20
   sumaMonedas 0 0 8 0 3  == 100
   sumaMonedas 1 1 1 1 1  ==  38

Curso de introducción a la programación con Haskell y Python

Mañana comenzará en Exercitium un curso práctico de introducción a la programación con Haskell y Python.

Diariamente, se publicará un ejercicio con sus soluciones en Haskell y en Python. El orden de los ejercicios se corresponde con el de los temas del curso de Programación funcional con Haskell. Además, en cada ejercicio se comentarán las diferencias entre ambos lenguajes y se irá extendiendo la tabla de equivalencia entre Haskell y Python.

Las soluciones de los ejercicios con Haskell se irán añadiendo al repositorio Exercitium em GitHub. Están como un proyecto con Stack (en concreto, la LTS-18.24) de forma que se puede verificar los ejemplos con

stack test

Las soluciones de los ejercicios con Python se irán añadiendo al repositorio Exercitium-Python em GitHub. Están como un proyecto con Poetry que usa la versión 3.10 de Python. También se pueden verificar los ejemplos con

poetry run pytest

He intentado escribir soluciones en Python parecidas a la de Haskell, conservando el estilo funcional. De todas formas, en los comentarios se pueden escribir definiciones alternativas en cualquiera de los lenguajes.

Los libros de Haskell en los que me he basado son

Los libros de Python en los que me he basado son

Números de Pentanacci

Los números de Fibonacci se definen mediante las ecuaciones

   F(0) = 0
   F(1) = 1
   F(n) = F(n-1) + F(n-2), si n > 1

Los primeros números de Fibonacci son

   0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ...

Una generalización de los anteriores son los números de Pentanacci definidos por las siguientes ecuaciones

   P(0) = 0
   P(1) = 1
   P(2) = 1
   P(3) = 2
   P(4) = 4
   P(n) = P(n-1) + P(n-2) + P(n-3) + P(n-4) + P(n-5), si n > 4

Los primeros números de Pentanacci son

  0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, ...

Definir la sucesión

   pentanacci :: [Integer]

cuyos elementos son los números de Pentanacci. Por ejemplo,

   λ> take 15 pentanacci
   [0,1,1,2,4,8,16,31,61,120,236,464,912,1793,3525]
   λ> (pentanacci !! (10^5)) `mod` (10^30) 
   482929150584077921552549215816
   231437922897686901289110700696
   λ> length (show (pentanacci !! (10^5)))
   29357

Número de representaciones de n como suma de dos cuadrados

Sea n un número natural cuya factorización prima es
$$n = 2^{a} \times p(1)^{b(1)} \times \dots \times p(n)^{b(n)} \times q(1)^{c(1)} \times \dots \times q(m)^{c(m)}$$
donde los p(i) son los divisores primos de n congruentes con 3 módulo 4 y los q(j) son los divisores primos de n congruentes con 1 módulo 4. Entonces, el número de forma de descomponer n como suma de dos
cuadrados es 0, si algún b(i) es impar y es el techo (es decir, el número entero más próximo por exceso) de
$$\frac{(1+c(1)) \times \dots \times (1+c(m))}{2}$$
en caso contrario. Por ejemplo, el número
$$2^{3} \times (3^{9} \times 7^{8}) \times (5^{3} \times 13^{6})$$
no se puede descomponer como sumas de dos cuadrados (porque el exponente de 3 es impar) y el número
$$2^{3} \times (3^{2} \times 7^{8}) \times (5^{3} \times 13^{6})$$
tiene 14 descomposiciones como suma de dos cuadrados (porque los exponentes de 3 y 7 son pares y el techo de
$$\frac{(1+3) \times (1+6)}{2}$$
es 14).

Definir la función

   nRepresentaciones :: Integer -> Integer

tal que (nRepresentaciones n) es el número de formas de representar n como suma de dos cuadrados. Por ejemplo,

   nRepresentaciones (2^3*3^9*5^3*7^8*13^6)        ==  0
   nRepresentaciones (2^3*3^2*5^3*7^8*13^6)        ==  14
   head [n | n < - [1..], nRepresentaciones n > 8]  ==  71825

Usando la función representaciones del ejercicio anterior, comprobar con QuickCheck la siguiente propiedad

   prop_representacion :: Positive Integer -> Bool
   prop_representacion (Positive n) =
     nRepresentaciones2 n == genericLength (representaciones n)

Representaciones de un número como suma de dos cuadrados

Definir la función

   representaciones :: Integer -> [(Integer,Integer)]

tal que (representaciones n) es la lista de pares de números naturales (x,y) tales que n = x^2 + y^2. Por ejemplo.

   representaciones  20              ==  [(2,4)]
   representaciones  25              ==  [(0,5),(3,4)]
   representaciones 325              ==  [(1,18),(6,17),(10,15)]
   length (representaciones (10^14)) == 8

Comprobar con QuickCheck que un número natural n se puede como suma de dos cuadrados si, y sólo si, en la factorización prima de n todos los exponentes de sus factores primos congruentes con 3 módulo 4 son pares.

Factorizaciones de números de Hilbert

Un número de Hilbert es un entero positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, …

Un primo de Hilbert es un número de Hilbert n que no es por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, …

Definir la función

   factorizacionesH :: Integer -> [[Integer]]

tal que (factorizacionesH n) es la listas de primos de Hilbert cuyo producto es el número de Hilbert n. Por ejemplo,

  factorizacionesH  25    ==  [[5,5]]
  factorizacionesH  45    ==  [[5,9]]
  factorizacionesH 441    ==  [[9,49],[21,21]]
  factorizacionesH 80109  ==  [[9,9,989],[9,69,129]]

Comprobar con QuickCheck que todos los números de Hilbert son factorizables como producto de primos de Hilbert (aunque la factorización, como para el 441, puede no ser única).

Números primos de Hilbert

Un número de Hilbert es un positivo de la forma 4n+1. Los primeros números de Hilbert son 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, …

Un primo de Hilbert es un número de Hilbert n que no es por ningún número de Hilbert menor que n (salvo el 1). Los primeros primos de Hilbert son 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 193, 197, …

Definir la sucesión

   primosH :: [Integer]

tal que sus elementos son los primos de Hilbert. Por ejemplo,

   take 15 primosH     == [5,9,13,17,21,29,33,37,41,49,53,57,61,69,73]
   primosH !! (3*10^4) == 313661