Representación de Zeckendorf

Los primeros números de Fibonacci son

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Descomposiciones triangulares

Los números triangulares se forman como sigue

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

Definir la función

tal que (descomposicionesTriangulares n) es la lista de las ternas correspondientes a las descomposiciones de n en tres sumandos formados por números triangulares. Por ejemplo,

Soluciones

[schedule expon=’2022-04-20′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-20′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Descomposiciones_triangulares.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Índices de valores verdaderos

Definir la función

tal que (indicesVerdaderos xs) es la lista infinita de booleanos tal que sólo son verdaderos los elementos cuyos índices pertenecen a la lista estrictamente creciente xs. Por ejemplo,

Soluciones

[schedule expon=’2022-04-19′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-19′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Indices_verdaderos.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

Definir la función

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Numeración de las ternas de números naturales

Las ternas de números naturales se pueden ordenar como sigue

Definir la función

tal que (posicion (x,y,z)) es la posición de la terna de números naturales (x,y,z) en la ordenación anterior. Por ejemplo,

Comprobar con QuickCheck que

  • la posición de (x,0,0) es x(x²+6x+11)/6
  • la posición de (0,y,0) es y(y²+3y+ 8)/6
  • la posición de (0,0,z) es z(z²+3z+ 2)/6
  • la posición de (x,x,x) es x(9x²+14x+7)/2

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se muestra en el siguiente vídeo:

Lista cuadrada

Definir la función

tal que (listaCuadrada n x xs) es una lista de n listas de longitud n formadas con los elementos de xs completada con x, si no xs no tiene suficientes elementos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de la solución se muestra en el siguiente vídeo:

Primos equidistantes

Definir la función

tal que (primosEquidistantes k) es la lista de los pares de primos cuya diferencia es k. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Primos consecutivos con media capicúa

Definir la lista

formada por las ternas (x,y,z) tales que x e y son primos consecutivos cuya media, z, es capicúa. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Suma de los números amigos menores que n

Dos números amigos son dos números enteros positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la función

tal que (sumaAmigosMenores n) es la suma de los números amigos menores que n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Mayor órbita de la sucesión de Collatz

Se considera la siguiente operación, aplicable a cualquier número entero positivo:

  • Si el número es par, se divide entre 2.
  • Si el número es impar, se multiplica por 3 y se suma 1.

Dado un número cualquiera, podemos calcular su órbita; es decir, las imágenes sucesivas al iterar la función. Por ejemplo, la órbita de 13 es

Si observamos este ejemplo, la órbita de 13 es periódica, es decir, se repite indefinidamente a partir de un momento dado). La conjetura de Collatz dice que siempre alcanzaremos el 1 para cualquier número con el que comencemos. Por ejemplo,

  • Empezando en n = 6 se obtiene 6, 3, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 11 se obtiene: 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 27, la sucesión tiene 112 pasos, llegando hasta 9232 antes de descender a 1: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Definir la función

tal que (mayoresGeneradores n) es la lista de los números menores o iguales que n cuyas órbitas de Collatz son las de mayor longitud. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Exponente en la factorización

Definir la función

tal que (exponente x n) es el exponente de x en la factorizacón prima de n (se supone que x > 1 y n > 0). Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reconocimiento de potencias de 4

Definir la función

tal que (esPotenciaDe4 n) se verifica si n es una potencia de 4. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reiteración de suma de consecutivos

La reiteración de la suma de los elementos consecutivos de la lista [1,5,3] es 14 como se explica en el siguiente diagrama

y la de la lista [1,5,3,4] es 29 como se explica en el siguiente diagrama

Definir la función

tal que (sumaReiterada xs) es la suma reiterada de los elementos consecutivos de la lista no vacía xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Sistema factorádico de numeración

El sistema factorádico es un sistema numérico basado en factoriales en el que el n-ésimo dígito, empezando desde la derecha, debe ser multiplicado por n! Por ejemplo, el número «341010» en el sistema factorádico es 463 en el sistema decimal ya que

En este sistema numérico, el dígito de más a la derecha es siempre 0, el segundo 0 o 1, el tercero 0,1 o 2 y así sucesivamente.

Con los dígitos del 0 al 9 el mayor número que podemos codificar es el 10!-1 = 3628799. En cambio, si lo ampliamos con las letras A a Z podemos codificar hasta 36!-1 = 37199332678990121746799944815083519999999910.

Definir las funciones

tales que

  • (factoradicoAdecimal cs) es el número decimal correspondiente al número factorádico cs. Por ejemplo,

  • (decimalAfactoradico n) es el número factorádico correpondiente al número decimal n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier entero positivo n,

Soluciones