Suma de números de Fibonacci con índice impar

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comienza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

Definir la función

tal que (sumaFibsIndiceImpar n) es la suma de los n primeros términos de la sucesión de Fibonacci no índice impar; es decir,

Por ejemplo,

En los ejemplos anteriores se observa que

Comprobar con QuickCheck que (sumaFibsIndiceImpar n) es F(2n); es decir, el 2n-ésimo número de Fibonacci

Soluciones

Referencia

Pensamiento

El corazón del poeta, tan rico en sonoridades, es casi un insulto a la afonía cordial de la masa.

Antonio Machado

Intersección de listas infinitas crecientes

Definir la función

tal que (interseccion xss) es la intersección de la lista no vacía de listas infinitas crecientes xss; es decir, la lista de los elementos que pertenecen a todas las listas de xss. Por ejemplo,

Soluciones

Pensamiento

Dios no es el creador del mundo (según Martín), sino el creador de la nada.

Antonio Machado

Múltiplos con ceros y unos

Se observa que todos los primeros números naturales tienen al menos un múltiplo no nulo que está formado solamente por ceros y unos. Por ejemplo, 1×10=10, 2×5=10, 3×37=111, 4×25=100, 5×2=10, 6×185=1110; 7×143=1001; 8X125=1000; 9×12345679=111111111.

Definir la función

tal que (multiplosCon1y0 n) es la lista de los múltiplos de n cuyos dígitos son 1 ó 0. Por ejemplo,

Comprobar con QuickCheck que todo entero positivo tiene algún múltiplo cuyos dígitos son 1 ó 0.

Soluciones

Pensamiento

Huye del triste amor, amor pacato,
sin peligro, sin venda ni aventura,
que espera del amor prenda segura,
porque en amor locura es lo sensato.

Antonio Machado

Números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, los 5 primeros números triangulares son

Definir la función

tal que triangulares es la lista de los números triangulares. Por ejemplo,

Comprobar con QuickCheck que entre dos números triangulares consecutivos siempre hay un número primo.

Soluciones

Pensamiento

Autores, la escena acaba
con un dogma de teatro:
En el principio era la máscara.

Antonio Machado

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Pensamiento

Era una noche del mes
de mayo, azul y serena.
Sobre el agudo ciprés
brillaba la luna llena.

Antonio Machado

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Pensamiento

Ni mármol duro y eterno,
ni música ni pintura,
sino palabra en el tiempo.

Antonio Machado

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Soluciones

Pensamiento

Bueno es saber que los vasos
nos sirven para beber;
lo malo es que no sabemos
para que sirve la sed.

Antonio Machado

Límites de sucesiones

El límite de una sucesión, con una aproximación a y una amplitud n, es el primer término x de la sucesión tal que el valor absoluto de x y cualquiera de sus n siguentes elementos es menor que a.

Definir la función

tal que (limite xs a n) es el límite de xs xon aproximación a y amplitud n. Por ejemplo,

Soluciones

Pensamiento

De diez cabezas, nueve
embisten y una piensa.
Nunca extrañéis que un bruto
se descuerne luchando por la idea.

Antonio Machado

Intersección de listas infinitas crecientes

Definir la función

tal que (interseccion xss) es la intersección de la lista no vacía de listas infinitas crecientes xss; es decir, la lista de los elementos que pertenecen a todas las listas de xss. Por ejemplo,

Soluciones

Pensamiento

Alguna vez he pensado
si el alma será la ausencia,
mientras más cerca más lejos;
mientras más lejos más cerca.

Antonio Machado

El 2019 es un número de la suerte

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

Se eliminan los números de dos en dos

Como el segundo número que ha quedado es 3, se eliminan los números restantes de tres en tres:

Como el tercer número que ha quedado es 7, se eliminan los números restantes de siete en siete:

Este procedimiento se repite indefinidamente y los supervivientes son los números de la suerte:

Definir las funciones

tales que

  • numerosDeLaSuerte es la sucesión de los números de la suerte. Por ejemplo,

  • (esNumeroDeLaSuerte n) que se verifica si n es un número de la suerte. Por ejemplo,

Soluciones

Pensamiento

Ya es sólo brocal el pozo;
púlpito será mañana;
pasado mañana, trono.

Antonio Machado

Polinomios de Fibonacci

La sucesión de polinomios de Fibonacci se define por

Los primeros términos de la sucesión son

Definir la lista

tal que sus elementos son los polinomios de Fibonacci. Por ejemplo,

Comprobar con QuickCheck que el valor del n-ésimo término de sucPolFib para x=1 es el n-ésimo término de la sucesión de Fibonacci 0, 1, 1, 2, 3, 5, 8, …

Nota. Limitar la búsqueda a ejemplos pequeños usando

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Números compuestos por un conjunto de primos

Los números compuestos por un conjunto de primos son los números cuyos factores primos pertenecen al conjunto. Por ejemplo, los primeros números compuestos por [2,5,7] son

El 28 es compuesto ya que sus divisores primos son 2 y 7 que están en [2,5,7].

Definir la función

tal que (compuesto ps) es la lista de los números compuestos por el conjunto de primos ps. Por ejemplo,

Soluciones

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es
Calculo_de_pi_mediante_la_serie_de_Nilakantha

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Soluciones

Múltiplos repitunos

El ejercicio 4 de la Olimpiada Matemáticas de 1993 es el siguiente:

Demostrar que para todo número primo p distinto de 2 y de 5, existen infinitos múltiplos de p de la forma 1111……1 (escrito sólo con unos).

Definir la función

tal que (multiplosRepitunos p n) es la lista de los múltiplos repitunos de p (es decir, de la forma 1111…1 escrito sólo con unos), donde p es un número primo distinto de 2 y 5. Por ejemplo,

Comprobar con QuickCheck que para todo primo p mayor que 5 y todo número entero positivo n, existe un mútiplo repituno de p mayor que n.

Soluciones

Matrices de Pascal

El triángulo de Pascal es un triángulo de números

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

La matriz de Pascal es la matriz cuyas filas son los elementos de la
correspondiente fila del triángulo de Pascal completadas con ceros. Por ejemplo, la matriz de Pascal de orden 6 es

Definir la función

tal que (matrizPascal n) es la matriz de Pascal de orden n. Por ejemplo,

Soluciones

Menor potencia de 2 que comienza por n

Definir las funciones

tales que

  • (menorPotencia n) es el par (k,m) donde m es la menor potencia de 2 que empieza por n y k es su exponentes (es decir, 2^k = m). Por ejemplo,

  • (graficaMenoresExponentes n) dibuja la gráfica de los exponentes de 2 en las menores potencias de los n primeros números enteros positivos. Por ejemplo, (graficaMenoresExponentes 200) dibuja
    Menor_potencia_de_2_que_comienza_por_n

Soluciones

Números que no son cuadrados

Definir las funciones

tales que

  • noCuadrados es la lista de los números naturales que no son cuadrados. Por ejemplo,

  • (graficaNoCuadrados n) dibuja las diferencias entre los n primeros elementos de noCuadrados y sus posiciones. Por ejemplo, (graficaNoCuadrados 300) dibuja
    Numeros_que_no_son_cuadrados_300
    (graficaNoCuadrados 3000) dibuja
    Numeros_que_no_son_cuadrados_3000
    (graficaNoCuadrados 30000) dibuja
    Numeros_que_no_son_cuadrados_30000

Comprobar con QuickCheck que el término de noCuadrados en la posición n-1 es (n + floor(1/2 + sqrt(n))).

Soluciones

Períodos de Fibonacci

Los primeros términos de la sucesión de Fibonacci son

Al calcular sus restos módulo 3 se obtiene

Se observa que es periódica y su período es

Definir las funciones

tales que

  • (fibsMod n) es la lista de los términos de la sucesión de Fibonacci módulo n. Por ejemplo,

  • (periodoFibMod n) es la parte perioica de la sucesión de Fibonacci módulo n. Por ejemplo,

  • longPeriodosFibMod es la sucesión de las longitudes de los períodos de las sucesiones de Fibonacci módulo n, para n > 0. Por ejemplo,

  • (graficaLongPeriodosFibMod n) dibuja la gráfica de los n primeros términos de la sucesión longPeriodosFibMod. Por ejemplo, (graficaLongPeriodosFibMod n) dibuja
    Periodos_de_Fibonacci 300

Soluciones

Exponentes de Hamming

Los números de Hamming forman una sucesión estrictamente creciente de números que cumplen las siguientes condiciones:

  • El número 1 está en la sucesión.
  • Si x está en la sucesión, entonces 2x, 3x y 5x también están.
  • Ningún otro número está en la sucesión.

Los primeros números de Hamming son 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, …

Los exponentes de un número de Hamming n es una terna (x,y,z) tal que n = 2^x*3^y*5^z. Por ejemplo, los exponentes de 600 son (3,1,2) ya que 600 = 2^x*3^1*5^z.

Definir la sucesión

cuyos elementos son los exponentes de los números de Hamming. Por ejemplo,

Soluciones

Sucesión de Lichtenberg

La sucesión de Lichtenberg esta formada por la representación decimal de los números binarios de la sucesión de dígitos 0 y 1 alternados Los primeros términos de ambas sucesiones son

Definir las funciones

tales que

  • lichtenberg es la lista cuyos elementos son los términos de la sucesión de Lichtenberg. Por ejemplo,

  • (graficaLichtenberg n) dibuja la gráfica del número de dígitos de los n primeros términos de la sucesión de Lichtenberg. Por ejemlo, (graficaLichtenberg 100) dibuja
    Sucesion_de_Lichtenberg

Comprobar con QuickCheck que todos los términos de la sucesión de Lichtenberg, a partir del 4º, son números compuestos.

Soluciones

Sucesión de dígitos 0 y 1 alternados

Los primeros términos de la sucesión de los dígitos 0 y 1 alternados son

Definir la lista

tal que sus elementos son los términos de la sucesión de los dígitos 0 y 1 alternados. Por ejemplo,

Soluciones

Sumas parciales de Nicómaco

Nicómaco de Gerasa vivió en Palestina entre los siglos I y II de nuestra era. Escribió Arithmetike eisagoge (Introducción a la aritmética) que es el primer trabajo en donde se trata la Aritmética de forma separada a la Geometría. En el tratado se encuentra la siguiente proposición: «si se escriben los números impares

entonces el primero es el cubo de 1; la suma de los dos siguientes, el cubo de 2; la suma de los tres siguientes, el cubo de 3; y así sucesivamente.»

Definir las siguientes funciones

tales que

  • (listasParciales xs) es la lista obtenido agrupando los elementos de la lista infinita xs de forma que la primera tiene 0 elementos; la segunda, el primer elemento de xs; la tercera, los dos siguientes; y así sucesivamente. Por ejemplo,

  • (sumasParciales xs) es la lista de las sumas parciales de la lista infinita xs. Por ejemplo,

Comprobar con QuickChek la propiedad de Nicómaco; es decir, que para todo número natural n, el término n-ésimo de (sumasParciales [1,3..]) es el cubo de n.

Soluciones

Enumeración de los números enteros

Definir la sucesión

tal que sus elementos son los números enteros comenzando en el 0 e intercalando los positivos y los negativos. Por ejemplo,

Comprobar con QuickCheck que el n-ésimo término de la sucesión es
(1-(2*n+1)*(-1)^n)/4.

Nota. En la comprobación usar

Soluciones

Números oblongos

Un número oblongo es un número que es el producto de dos números naturales consecutivos; es decir, n es un número oblongo si existe un número natural x tal que n = x(x+1). Por ejemplo, 42 es un número oblongo porque 42 = 6 x 7.

Definir las funciones

tales que

  • (esOblongo n) se verifica si n es oblongo. Por ejemplo,

  • oblongos es la suceción de los números oblongos. Por ejemplo,

Soluciones

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Números construibles como sumas de dos dados

Un número x es construible a partir de de los números enteros positivos a y b si se puede escribir como una suma cuyos sumandos son a o b. Por ejemplo, 7 y 9 son construibles a partir de 2 y 3 ya que 7 = 2+2+3 y 9 = 3+3+3.

Definir las funciones

tales que

  • (construibles a b) es la lista de los números construibles a partir de a y b. Por ejemplo,

  • (esConstruible a b x) se verifica si x es construible a partir de a y b. Por ejemplo,

Soluciones

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es
Calculo_de_pi_mediante_la_serie_de_Nilakantha

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

y al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Nota: Este ejercicio ha sido propuesto por Manuel Herrera.

Referencias

Soluciones

Números de la suerte

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

Se eliminan los números de dos en dos

Como el segundo número que ha quedado es 3, se eliminan los números
restantes de tres en tres:

Como el tercer número que ha quedado es 7, se eliminan los números restantes de
siete en siete:

Este procedimiento se repite indefinidamente y los supervivientes son
los números de la suerte:

Definir la sucesión

cuyos elementos son los números de la suerte. Por ejemplo,

Soluciones