Máximo número de consecutivos iguales al dado

Definir la función

tal que (maximoConsecutivosIguales x xs) es el mayor número de elementos consecutivos en xs iguales a x. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La programación de computadoras es un arte, porque aplica el conocimiento
acumulado al mundo, porque requiere habilidad e ingenio, y especialmente
porque produce belleza. Un programador que subconscientemente se ve
a sí mismo como un artista disfrutará con lo que hace y lo hará mejor.»

Donald Knuth.

Entre dos potencias sucesivas

Se dice que un número entero está entre potencias sucesivas de n si x-1 es una potencia n-ésima y x+1 es una potencia (n+1)-ésima; es decir, si existen a y b tales que x-1 es a^n y x+1 es b^(n+1). Por ejemplo,

Definir las funciones

tales que

  • (entrePotencias n x) se verifica si x está entre potencias sucesivas de n. Por ejemplo,

  • pares es la lista de los números enteros ordenados por su suma y primer elemento. Por ejemplo,

  • paresEntrePotencias es la lista de los pares (n,x) tales que x está entre potencias sucesivas de n. Por ejemplo,

Comprobar con QuickCheck que 26 es el único número que está entre potencias sucesivas con exponentes mayor que 1; es decir, que el único par (n,x) tal que x está entre potencias sucesivas de n con n mayor que uno es el (2,26).

Nota: Este ejercicio ha sido propuesto por Rebeca Isabel González Gordillo y está basado en el artículo El número 26 … ¡un número especial! de Amadeo Artacho en MatematicasCercanas.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«El verdadero objetivo de la ciencia es el honor de la mente humana.»

Carl Gustav Jacob Jacobi

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,

  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,

  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«El control de la complejidad es la esencia de la programación informática.»

Brian Kernighan.

Números sin 2 en base 3

Definir la sucesión

cuyos términos son los números cuya representación en base 3 no contiene el dígito 2. Por ejemplo,

Se observa que

  • 12 está en la sucesión ya que su representación en base 3 es 110 (porque 1·3² + 1·3¹ + 0.3⁰ = 12) y no contiene a 2.
  • 14 no está en la sucesión ya que su representación en base 3 es 112 (porque 1·3² + 1·3¹ + 2.3⁰ = 14) y contiene a 2.

Comprobar con QuickCheck que las sucesiones numerosSin2EnBase3 y sucesionSin3enPA (del ejercicio anterior) son iguales; es decir, para todo número natural n, el n-ésimo término de numerosSin2EnBase3 es igual al n-ésimo término de sucesionSin3enPA.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

O que yo pueda asesinar un día
en mi alma, al despertar, esa persona
que me hizo el mundo mientras yo dormía.

Antonio Machado

Elementos múltiplos de la longitud de la lista

Definir las funciones

tales que

  • (multiplosDeLaLongitud xs) es la lista de los elementos de xs que son múltiplos de la longitud de xs. Por ejemplo,

  • (multiplosDeLaLongitudDeConsecutivos n m) es la lista de elementos de [n..n+m-1] que son múltiplos de n. Por ejemplo,

Comprobar con QuickCheck si se verifican las siguientes propiedades

  • En cualquier conjunto de m elementos consecutivos, m divide exactamente a uno de dichos elementos. En otras palabras, si n y m son enteros positivos, entonces (multiplosDeLaLongitudDeConsecutivos n m) tiene exactamente un elemento.
  • Si n es un entero positivo y m >= n, entonces (multiplosDeLaLongitudDeConsecutivos n m) es igual a [m]
  • Si n y n son enteros positivos y m < n, entonces (multiplosDeLaLongitudDeConsecutivos n m) es igual a [m * ceiling (n’ / m’)] donde n’ y m’ son las formas decimales de n y m respectivamente.

Soluciones

Referencia

Pensamiento

Pensando que no veía
porque Dios no le miraba,
dijo Abel cuando moría:
Se acabó lo que se daba.

Antonio Machado

Teorema de Liouville sobre listas CuCu

Una lista CuCu es una lista de números enteros positivos tales que la suma de sus Cubos es igual al Cuadrado de su suma. Por ejemplo, [1, 2, 3, 2, 4, 6] es una lista CuCu ya que

La lista de Liouville correspondiente al número entero positivo n es la lista formada por el número de divisores de cada divisor de n. Por ejemplo, para el número 20 se tiene que sus divisores son

puesto que el número de sus divisores es

  • El 1 tiene 1 divisor (el 1 solamente).
  • El 2 tiene 2 divisores (el 1 y el 2).
  • El 4 tiene 3 divisores (el 1, el 2 y el 4).
  • El 5 tiene 2 divisores (el 1 y el 5).
  • El 10 tiene 4 divisores (el 1, el 2, el 5 y el 10).
  • El 20 tiene 6 divisores (el 1, el 2, el 4, el 5, el 10 y el 20).

la lista de Liouville de 20 es [1, 2, 3, 2, 4, 6] que, como se comentó anteriormente, es una lista CuCu.

El teorema de Lioville afirma que todas las lista de Lioville son CuCu.

Definir las funciones

tales que

  • (esCuCu xs) se verifica si la lista xs es CuCu; es decir, la suma de los cubos de sus elementos es igual al cuadrado de su suma. Por ejemplo,

  • (liouville n) es la lista de Lioville correspondiente al número n. Por ejemplo,

Comprobar con QuickCheck

  • que para todo entero positivo n, (liouville (2^n)) es la lista [1,2,3,…,n+1] y
  • el teorema de Lioville; es decir, para todo entero positivo n, (liouville n) es una lista CuCu.

Nota: Este ejercicio está basado en Cómo generar conjuntos CuCu de Gaussianos.

Soluciones

Pensamiento

¡Oh, tarde viva y quieta
que opuso al panta rhei su nada corre.

Antonio Machado

Derivada aritmética

La derivada aritmética es una función definida sobre los números naturales por analogía con la regla del producto para el cálculo de las derivadas usada en análisis.

Para un número natural n su derivada D(n) se define por

Por ejemplo,

Definir la función

tal que (derivada n) es la derivada aritmética de n. Por ejemplo,

Comprobar con QuickCheck que si x es un número entero positivo y su descomposición en factores primos es

entonces la derivada de x es

Nota: No usar en la definición la propiedad que hay que comprobar.

Soluciones

Referencias

Pensamiento

En ese jardín, Guiomar,
el mutuo jardín que inventan
dos corazones al par,
se funden y complementan
nuestras horas.

Antonio Machado

Posiciones de conjuntos finitos de naturales

En un ejercicio anterior se mostró que los conjuntos finitos de números naturales se pueden enumerar como sigue

en la que los elementos están ordenados de manera decreciente.

Además, se definió la constante

tal que sus elementos son los conjuntos de los números naturales con la ordenación descrita anteriormente. Por ejemplo,

Definir la función

tal que (posicion xs) es la posición del conjunto finito de números naturales xs, representado por una lista decreciente, en enumeracionCFN. Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Soluciones

Pensamiento

¡Volar sin alas donde todo es cielo!

Antonio Machado

Enumeración de conjuntos finitos de naturales

Los conjuntos finitos de números naturales se pueden enumerar como sigue

en la que los elementos están ordenados de manera decreciente.

Definir la constante

tal que sus elementos son los conjuntos de los números naturales con la ordenación descrita anteriormente. Por ejemplo,

Comprobar con QuickCheck que

  • si (xs,ys) es un par de elementos consecutivos de enumeracionCFN, entonces xs < ys;
  • todo conjunto finito de números naturales, representado por una lista decreciente, está en enumeracionCFN.

Soluciones

Pensamiento

Junto al agua fría,
en la senda clara,
sombra dará algún día,
ese arbolillo en que nadie repara.

Antonio Machado

Infinitud de primos gemelos

Un par de números primos (p,q) es un par de números primos gemelos si su distancia de 2; es decir, si q = p+2. Por ejemplo, (17,19) es una par de números primos gemelos.

La conjetura de los primos gemelos postula la existencia de infinitos pares de primos gemelos.

Definir la constante

tal que sus elementos son los pares de primos gemelos. Por ejemplo,

Comprobar con QuickCheck la conjetura de los primos gemelos.

Soluciones

Pensamiento

El sentimiento ha de tener tanto de individual como de genérico; debe orientarse hacia valores universales, o que pretenden serlo.

Antonio Machado

Suma de números de Fibonacci con índice impar

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comienza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

Definir la función

tal que (sumaFibsIndiceImpar n) es la suma de los n primeros términos de la sucesión de Fibonacci no índice impar; es decir,

Por ejemplo,

En los ejemplos anteriores se observa que

Comprobar con QuickCheck que (sumaFibsIndiceImpar n) es F(2n); es decir, el 2n-ésimo número de Fibonacci

Soluciones

Referencia

Pensamiento

El corazón del poeta, tan rico en sonoridades, es casi un insulto a la afonía cordial de la masa.

Antonio Machado

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

Soluciones

Pensamiento

Largo es el camino de la enseñanza por medio de teorías; breve y eficaz por medio de ejemplos. ~ Séneca

Evaluación de árboles de expresiones aritméticas

Las expresiones aritméticas se pueden representar como árboles con números en las hojas y operaciones en los nodos. Por ejemplo, la expresión «9-2*4» se puede representar por el árbol

Definiendo el tipo de dato Arbol por

la representación del árbol anterior es

Definir la función

tal que (valor a) es el valor de la expresión aritmética correspondiente al árbol a. Por ejemplo,

Soluciones

Pensamiento

En cierto modo, las matemáticas no son el arte de responder preguntas matemáticas, es el arte de hacer las preguntas correctas, las preguntas que te dan una idea, las que te guían en direcciones interesantes, las que se conectan con muchas otras preguntas interesantes, las que tienen hermosas respuestas. ~ Gregory Chaitin

Suma de primos menores

La suma de los primos menores que 10 es 2 + 3 + 5 + 7 = 17.

Definir la función

tal que (sumaPrimosMenores n) es la suma de los primos menores que n. Por ejemplo,

Nota: Este ejercicio está basado en el problema 10 del Proyecto Euler

Soluciones

Pensamiento

El movimiento no es nada esencial. La fuerza puede ser inmóvil (lo es en su estado de pureza); mas no por ello deja de ser activa.

Antonio Machado

Primos o cuadrados de primos

Definir la constante

cuyos elementos son los número primos o cuadrados de primos. Por ejemplo,

Comprobar con QuickCheck que las lista primosOcuadradosDePrimos y unifactorizables (definida en el ejercicio anterior) son iguales.

Soluciones

Pensamiento

Despacito y buena letra: el hacer las cosas bien importa más que el hacerlas.

Antonio Machado

Sublistas con producto dado

Definir las funciones

tales que

  • (sublistasConProducto n xs) es la lista de las sublistas de la lista ordenada estrictamente creciente xs (cuyos elementos son enteros mayores que 1) cuyo producto es el número entero n (con n mayor que 1). Por ejemplo,

  • unifactorizables es la lísta de los números enteros mayores que 1 que se pueden escribir sólo de una forma única como producto de enteros distintos mayores que uno. Por ejemplo,

Soluciones

Pensamiento

Y en el encinar,
¡luna redonda y beata,
siempre conmigo a la par!
Cerca de Úbeda la grande,
cuyos cerros nadie verá,
me iba siguiendo la luna
sobre el olivar.
Una luna jadeante,
siempre conmigo a la par.

Antonio Machado

Múltiplos palíndromos

Los números 545, 5995 y 15151 son los tres menores palíndromos (capicúas) que son divisibles por 109.

Definir las funciones

tales que

  • (multiplosPalindromos n) es la lista de los palíndromos divisibles por n. Por ejemplo,

  • (multiplosPalindromosMenores x n) es la lista de los palíndromos divisibles por n, menores que x. Por ejemplo,

Nota: Este ejercicio está basado en el problema 655 del Proyecto Euler.

Soluciones

Pensamiento

Esta luz de Sevilla… Es el palacio
donde nací, con su rumor de fuente.

Antonio Machado

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Nota: Este ejercicio está basado en el problema 8 del Proyecto Euler

Soluciones

Pensamiento

«El control de la complejidad es la esencia de la programación.» ~ B.W. Kernigan

Menor divisible por todos

Definir la función

tal que (menorDivisible a b) es el menor número divisible por todos los números desde a hasta b, ambos inclusive. Por ejemplo,

Nota: Este ejercicio está basado en el problema 5 del Proyecto Euler

Soluciones

Pensamiento

Será el peor de los malos
bribón que olvide
su vocación de diablo.

Antonio Machado

Factorización prima

La descomposición prima de 600 es

Definir la función

tal que (factorizacion x) ses la lista de las bases y exponentes de la descomposición prima de x. Por ejemplo,

Soluciones

Pensamiento

¿Todo para los demás?
Mancebo, llena tu jarro,
que ya te lo beberán.

Antonio Machado

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Pensamiento

Era una noche del mes
de mayo, azul y serena.
Sobre el agudo ciprés
brillaba la luna llena.

Antonio Machado

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Pensamiento

Mis ojos en el espejo
son ojos ciegos que miran
los ojos con que los veo.

Antonio Machado

Máxima suma de los segmentos

Un segmento de una lista xs es una sublista de xs formada por elementos consecutivos en la lista. El problema de la máxima suma de segmentos consiste en dada una lista de números enteros calcular el máximo de las sumas de todos los segmentos de la lista. Por ejemplo, para la lista [-1,2,-3,5,-2,1,3,-2,-2,-3,6] la máxima suma de segmentos es 7 que es la suma del segmento [5,-2,1,3] y para la lista [-1,-2,-3] es 0 que es la suma de la lista vacía.

Definir la función

tal que (mss xs) es la máxima suma de los segmentos de xs. Por ejemplo,

Soluciones

Pensamiento

Nubes, sol, prado verde y caserío
en la loma, revueltos. Primavera
puso en el aire de este campo frío
la gracia de sus chopos de ribera.

Antonio Machado

Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período «abababab» es «ab» ya que «abababab» se obtiene repitiendo tres veces la lista «ab».

Definir la función

tal que (periodo xs) es el período de xs. Por ejemplo,

Soluciones

Pensamiento

Esta luz de Sevilla … Es el palacio
donde nací, con su rumor de fuente.

Antonio Machado

Matriz dodecafónica

Como se explica en Create a Twelve-Tone Melody With a Twelve-Tone Matrix una matriz dodecafónica es una matriz de 12 filas y 12 columnas construidas siguiendo los siguientes pasos:

  • Se escribe en la primera fila una permutación de los números del 1 al 12. Por ejemplo,

  • Escribir la primera columna de forma que, para todo i (entre 2 y 12), a(i,1) es el número entre 1 y 12 que verifica la siguiente condición

Siguiendo con el ejemplo anterior, la matriz con la 1ª fila y la 1ª columna es

  • Escribir la segunda fila de forma que, para todo j (entre 2 y 12), a(j,2) es el número entre 1 y 12 que verifica la siguiente condición

Siguiendo con el ejemplo anterior, la matriz con la 1ª fila, 1ª columna y 2ª fila es

  • Las restantes filas se completan como la 2ª; es decir, para todo i (entre 3 y 12) y todo j (entre 2 y 12), a(i,j) es el número entre 1 y 12 que verifica la siguiente relación.

Siguiendo con el ejemplo anterior, la matriz dodecafónica es

Definir la función

tal que (matrizDodecafonica xs) es la matriz dodecafónica cuya primera fila es xs (que se supone que es una permutación de los números del 1 al 12). Por ejemplo,

Comprobar con QuickCheck para toda matriz dodecafónica D se verifican las siguientes propiedades:

  • todas las filas de D son permutaciones de los números 1 a 12,
  • todos los elementos de la diagonal de D son iguales y
  • la suma de todos los elementos de D es 936.

Nota: Este ejercicio ha sido propuesto por Francisco J. Hidalgo.

Soluciones

Pensamiento

Como el olivar,
mucho fruto lleva,
poca sombra da.

Antonio Machado

Distribución de diferencias de dígitos consecutivos de pi

Usando la librería Data.Number.CReal, que se instala con

se pueden calcular el número pi con la precisión que se desee. Por ejemplo,

importa la librería y calcula el número pi con 60 decimales.

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros n dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

Las diferencias de sus elementos consecutivos es

y la distribución de sus frecuencias en el intervalo [-9,9] es

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,

  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] «distribucionDDCpi.png» se escribe en el fichero «distribucionDDCpi.png» la siguiente gráfica

Soluciones

Pensamiento

Doy consejo, a fuer de viejo:
nunca sigas mi consejo.

Antonio Machado

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

Por ejemplo,

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,

  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,

Soluciones

Pensamiento

¿Cuál es la verdad? ¿El río
que fluye y pasa
donde el barco y el barquero
son también ondas de agua?
¿O este soñar del marino
siempre con ribera y ancla?

Antonio Machado

Matriz girada 180 grados

Definir la función

tal que (matrizGirada180 p) es la matriz obtenida girando 180 grados la matriz p. Por ejemplo,

Soluciones

Pensamiento

Bueno es recordar
las palabras viejas
que han de volver a sonar.

Antonio Machado

Árboles cuyas ramas cumplen una propiedad

Los árboles se pueden representar mediante el siguiente tipo de dato

Por ejemplo, los árboles

se representan por

Definir la función

tal que (todasDesdeAlguno p ar) se verifica si para toda rama existe un elemento a partir del cual todos los elementos de la rama verifican la propiedad p. Por ejemplo,

Soluciones

Pensamiento

Por dar al viento trabajo,
cosía con hilo doble
las hojas secas del árbol.

Antonio Machado

Caminos minimales en un árbol numérico

En la librería Data.Tree se definen los tipos de árboles y bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u.v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que
+ (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Pensamiento

Tras el vivir y el soñar,
está lo que más importa:
despertar.

Antonio Machado