Representación de Zeckendorf

Los primeros números de Fibonacci son

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Separación por posición

Definir la función

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Código de las alergias

Para la determinación de las alergia se utiliza los siguientes códigos para los alérgenos:

Así, si Juan es alérgico a los cacahuetes y al chocolate, su puntuación es 34 (es decir, 2+32).

Los alérgenos se representan mediante el siguiente tipo de dato

Definir la función

tal que (alergias n) es la lista de alergias correspondiente a una puntuación n. Por ejemplo,

Soluciones

[schedule expon=’2022-04-18′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-18′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Alergias.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

Definir la función

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Trenzado de listas

Definir la función

tal que (trenza xs ys) es la lista obtenida intercalando los elementos de xs e ys. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Biparticiones de una lista

Definir la función

tal que (biparticiones xs) es la lista de pares formados por un prefijo de xs y el resto de xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

Definir la función

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…]. Por ejemplo,

  • triangulo es el triángulo de Gilbreath. Por ejemplo,

  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La simplicidad es la última sofisticación.»

Leonardo da Vinci.

Primero no consecutivo

Definir la función

tal que (primeroNoConsecutivo xs) es el primer elemento de la lista xs que no es igual al siguiente de su elemento anterior en xs o Nothing si tal elemento no existe. Por ejemplo

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La única enseñanza que un profesor puede dar, en mi opinión, es la de pensar delante de sus alumnos.»

Henri Lebesgue.

Grafo de una FNC (fórmula en forma normal conjuntiva)

Para reducir el problema del clique a SAT se comienza asociando a cada fórmula F en FNC un grafo G de forma que F es saisfacible si, y sólo si, G tiene un clique con tantos nodos como cláusulas tiene F.

Los nodos del grafo de F son los literales de las cláusulas de F junto con el número de la cláusula. Por ejemplo, la lista de nodos de la FNC [[1,-2,3],[-1,2],[-2,3]] es

En el grafo de F, hay un arco entre dos nodos si, y solo si, corresponden a cláusulas distintas y sus literales no son complementarios. Por ejemplo,

  • hay un arco entre (0,1) y (1,2) [porque son de cláusulas distintas (0 y 1) y sus literales (1 y 2) no son complementarios.
  • no hay un arco entre (0,1) y (1,-1) [porque sus literales (1 y -1) no son complementarios.
  • no hay un arco entre (0,1) y (0,3) [porque son de la misma cláusula (la 0)].

Nota: En este ejercicio se usará los conceptos de los anteriores importando los módulos Evaluacion_de_FNC y Grafo.

Definir las funciones

tales que

  • (nodosFNC f) es la lista de los nodos del grafo de f. Por ejemplo,

  • (grafo FNC f) es el grafo de f. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Las matemáticas tienen dos caras: son la ciencia rigurosa de Euclides, pero también son algo más. La matemática presentada a la manera euclidiana aparece como una ciencia sistemática y deductiva; pero la matemática en ciernes aparece como una ciencia experimental e inductiva. Ambos aspectos son tan antiguos como la propia ciencia de las matemáticas.»

George Pólya.

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,

  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,

  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«El control de la complejidad es la esencia de la programación informática.»

Brian Kernighan.

Infinitud de primos gemelos

Un par de números primos (p,q) es un par de números primos gemelos si su distancia de 2; es decir, si q = p+2. Por ejemplo, (17,19) es una par de números primos gemelos.

La conjetura de los primos gemelos postula la existencia de infinitos pares de primos gemelos.

Definir la constante

tal que sus elementos son los pares de primos gemelos. Por ejemplo,

Comprobar con QuickCheck la conjetura de los primos gemelos.

Soluciones

Pensamiento

El sentimiento ha de tener tanto de individual como de genérico; debe orientarse hacia valores universales, o que pretenden serlo.

Antonio Machado

Números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, los 5 primeros números triangulares son

Definir la función

tal que triangulares es la lista de los números triangulares. Por ejemplo,

Comprobar con QuickCheck que entre dos números triangulares consecutivos siempre hay un número primo.

Soluciones

Pensamiento

Autores, la escena acaba
con un dogma de teatro:
En el principio era la máscara.

Antonio Machado

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

Pensamiento

Sus cantares llevan
agua de remanso,
que parece quieta.
Y que no lo está;
mas no tiene prisa
por ir a la mar.

Antonio Machado

Distribución de diferencias de dígitos consecutivos de pi

Usando la librería Data.Number.CReal, que se instala con

se pueden calcular el número pi con la precisión que se desee. Por ejemplo,

importa la librería y calcula el número pi con 60 decimales.

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros n dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

Las diferencias de sus elementos consecutivos es

y la distribución de sus frecuencias en el intervalo [-9,9] es

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,

  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] «distribucionDDCpi.png» se escribe en el fichero «distribucionDDCpi.png» la siguiente gráfica

Soluciones

Pensamiento

Doy consejo, a fuer de viejo:
nunca sigas mi consejo.

Antonio Machado

Triángulo de Pascal binario

Los triángulos binarios de Pascal se formas a partir de una lista de ceros y unos usando las reglas del triángulo de Pascal, donde cada uno de los números es suma módulo dos de los dos situados en diagonal por encima suyo. Por ejemplo, los triángulos binarios de Pascal correspondientes a [1,0,1,1,1] y [1,0,1,1,0] son

Sus finales, desde el extremo inferior al extremos superior derecho, son [0,1,0,0,1] y [1,0,1,1,0], respectivamente.

Una lista es Pascal capicúa si es igual a los finales de su triángulo binario de Pascal. Por ejemplo, [1,0,1,1,0] es Pascal capicúa.

Definir las funciones

tales que

  • (trianguloPascalBinario xs) es el triágulo binario de Pascal correspondiente a la lista xs. Por ejemplo,

  • (pascalCapicuas n) es la lista de listas de Pascal capicúas de n elementos. Por ejemplo,

  • (nPascalCapicuas n) es el número de listas de Pascal capicúas de n elementos. Por ejemplo,

Soluciones

Pensamiento

La envidia de la virtud
hizo a Caín criminal.
¡Gloria a Caín! Hoy el vicio
es lo que se envidia más.

Antonio Machado

Recorrido de árboles en espiral

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (espiral x) es la lista de los nodos del árbol x recorridos en espiral; es decir, la raíz de x, los nodos del primer nivel de izquierda a derecha, los nodos del segundo nivel de derecha a izquierda y así sucesivamente. Por ejemplo,

Soluciones

Pensamiento

Dice la monotonía
del agua clara al caer:
un día es como otro día;
hoy es lo mismo que ayer.

Antonio Machado

El 2019 es un número de la suerte

Un número de la suerte es un número natural que se genera por una criba, similar a la criba de Eratóstenes, como se indica a continuación:

Se comienza con la lista de los números enteros a partir de 1:

Se eliminan los números de dos en dos

Como el segundo número que ha quedado es 3, se eliminan los números restantes de tres en tres:

Como el tercer número que ha quedado es 7, se eliminan los números restantes de siete en siete:

Este procedimiento se repite indefinidamente y los supervivientes son los números de la suerte:

Definir las funciones

tales que

  • numerosDeLaSuerte es la sucesión de los números de la suerte. Por ejemplo,

  • (esNumeroDeLaSuerte n) que se verifica si n es un número de la suerte. Por ejemplo,

Soluciones

Pensamiento

Ya es sólo brocal el pozo;
púlpito será mañana;
pasado mañana, trono.

Antonio Machado

Números colinas

Se dice que un número natural n es una colina si su primer dígito es igual a su último dígito, los primeros dígitos son estrictamente creciente hasta llegar al máximo, el máximo se puede repetir y los dígitos desde el máximo al final son estrictamente decrecientes.

Definir la función

tal que (esColina n) se verifica si n es un número colina. Por ejemplo,

Soluciones

Referencia

Basado en el problema Is this number a hill number? de Code Golf

Pensamiento

Si me tengo que morir
poco me importa aprender.
Y si no puedo saber,
poco me importa vivir.

Antonio Machado

Números primos sumas de dos primos

Definir las funciones

primosSumaDeDosPrimos :: [Integer]
tales que

  • (esPrimoSumaDeDosPrimos x) se verifica si x es un número primo que se puede escribir como la suma de dos números primos. Por ejemplo,

  • primosSumaDeDosPrimos es la lista de los números primos que se pueden escribir como la suma de dos números primos. Por ejemplo,

Soluciones

Pensamiento

Sed incompresivos; yo os aconsejo la incomprensión, aunque sólo sea para destripar los chistes de los tontos.

Antonio Machado

Distancia de Hamming

La distancia de Hamming entre dos listas es el número de posiciones en que los correspondientes elementos son distintos. Por ejemplo, la distancia de Hamming entre «roma» y «loba» es 2 (porque hay 2 posiciones en las que los elementos correspondientes son distintos: la 1ª y la 3ª).

Definir la función

tal que (distancia xs ys) es la distancia de Hamming entre xs e ys. Por ejemplo,

Comprobar con QuickCheck si la distancia de Hamming tiene la siguiente propiedad

y, en el caso de que no se verifique, modificar ligeramente la propiedad para obtener una condición necesaria y suficiente de distancia(xs,ys) = 0.

Soluciones

Pensamiento

En mi soledad/
he visto cosas muy claras,
que no son verdad.

Antonio Machado

Recorrido en ZigZag

El recorrido en ZigZag de una matriz consiste en pasar de la primera fila hasta la última, de izquierda a derecha en las filas impares y de derecha a izquierda en las filas pares, como se indica en la figura.

Definir la función

tal que (recorridoZigZag m) es la lista con los elementos de la matriz m cuando se recorre esta en ZigZag. Por ejemplo,

Soluciones

El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

representa una solución del problema de las 3 torres.

Definir las funciones

tales que
+ (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,

Soluciones

[schedule expon=’2018-06-12′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de abril.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-12′ at=»06:00″]

[/schedule]

La regla de los signos de Descartes

Los polinomios pueden representarse mediante listas. Por ejemplo, el polinomio x^5+3x^4-5x^2+x-7 se representa por [1,3,0,-5,1,-7]. En dicha lista, obviando el cero, se producen tres cambios de signo: del 3 al -5, del -5 al 1 y del 1 al -7. Llamando C(p) al número de cambios de signo en la lista de coeficientes del polinomio p(x), tendríamos entonces que en este caso C(p)=3.

La regla de los signos de Descartes dice que el número de raíces reales positivas de una ecuación polinómica con coeficientes reales igualada a cero es, como mucho, igual al número de cambios de signo que se produzcan entre sus coeficientes (obviando los ceros). Por ejemplo, en el caso anterior la ecuación tendría como mucho tres soluciones reales positivas, ya que C(p)=3.

Además, si la cota C(p) no se alcanza, entonces el número de raíces positivas de la ecuación difiere de ella un múltiplo de dos. En el ejemplo anterior esto significa que la ecuación puede tener tres raíces positivas o tener solamente una, pero no podría ocurrir que tuviera dos o que no tuviera ninguna.

Definir las funciones

tales que

  • (cambios xs) es la lista de los pares de elementos de xs con signos distintos, obviando los ceros. Por ejemplo,

  • (nRaicesPositivas p) es la lista de los posibles números de raíces positivas del polinomio p (representado mediante una lista) según la regla de los signos de Descartes. Por ejemplo,

que significa que la ecuación x^5+3x^4-5x^2+x-7=0 puede tener 3 ó 1 raíz positiva.

Soluciones

Alturas primas

Se considera una enumeración de los números primos:

Dado un entero x > 1, su altura prima es el mayor i tal que el primo p(i) aparece en la factorización de x en números primos. Por ejemplo, la altura prima de 3500 tiene longitud 4, pues 3500=2^2×5^3×7^1 y la de 34 tiene es 7, pues 34 = 2×17. Además, se define la altura prima de 1 como 0.

Definir las funciones

tales que

  • (alturaPrima x) es la altura prima de x. Por ejemplo,

  • (alturasPrimas n) es la lista de las altura prima de los primeros n números enteros positivos. Por ejemplo,

  • (graficaAlturaPrima n) dibuja las alturas primas de los números entre 2 y n. Por ejemplo, (graficaAlturaPrima 500) dibuja
    Alturas_primas

Soluciones

La carrera de Collatz

Sea f la siguiente función, aplicable a cualquier número entero positivo:

  • Si el número es par, se divide entre 2.
  • Si el número es impar, se multiplica por 3 y se suma 1.

La carrera de Collatz consiste en, dada una lista de números ns, sustituir cada número n de ns por f(n) hasta que alguno sea igual a 1. Por ejemplo, la siguiente sucesión es una carrera de Collatz

En esta carrera, los ganadores son 3 y 20.

Definir la función

tal que (ganadores ns) es la lista de los ganadores de la carrera de Collatz a partir de la lista inicial ns. Por ejmplo,

Soluciones

Operaciones binarias con matrices

Entre dos matrices de la misma dimensión se pueden aplicar distintas operaciones binarias entre los elementos en la misma posición. Por ejemplo, si a y b son las matrices

entonces a+b y a-b son, respectivamente

Definir la función

tal que (opMatriz f p q) es la matriz obtenida aplicando la operación f entre los elementos de p y q de la misma posición. Por ejemplo,

Soluciones

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…] Por ejemplo,

  • triangulo es el triángulo de Gilbreath. Por ejemplo,

  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,

Soluciones