Menu Close

Etiqueta: zip

Representación de Zeckendorf

Los primeros números de Fibonacci son

   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

   100 = 89 + 8 + 3

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

   100 = 89 +  8 + 2 + 1
   100 = 55 + 34 + 8 + 3

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

   zeckendorf :: Integer -> [Integer]

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

   zeckendorf 100 == [89,8,3]
   zeckendorf 200 == [144,55,1]
   zeckendorf 300 == [233,55,8,3,1]
   length (zeckendorf (10^50000)) == 66097

Soluciones

module Representacion_de_Zeckendorf where
 
import Data.List (subsequences)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
zeckendorf1 :: Integer -> [Integer]
zeckendorf1 = head . zeckendorf1Aux
 
zeckendorf1Aux :: Integer -> [[Integer]]
zeckendorf1Aux n =
  [xs | xs <- subsequences (reverse (takeWhile (<= n) (tail fibs))),
        sum xs == n,
        sinFibonacciConsecutivos xs]
 
-- fibs es la la sucesión de los números de Fibonacci. Por ejemplo,
--    take 14 fibs  == [1,1,2,3,5,8,13,21,34,55,89,144,233,377]
fibs :: [Integer]
fibs = 1 : scanl (+) 1 fibs
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
 
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
--    sinFibonacciConsecutivos [89, 8, 3]      ==  True
--    sinFibonacciConsecutivos [55, 34, 8, 3]  ==  False
sinFibonacciConsecutivos :: [Integer] -> Bool
sinFibonacciConsecutivos xs =
  and [x /= siguienteFibonacci y | (x,y) <- zip xs (tail xs)]
 
-- (siguienteFibonacci n) es el menor número de Fibonacci mayor que
-- n. Por ejemplo, 
--    siguienteFibonacci 34  ==  55
siguienteFibonacci :: Integer -> Integer
siguienteFibonacci n =
  head (dropWhile (<= n) fibs)
 
-- 2ª solución
-- ===========
 
zeckendorf2 :: Integer -> [Integer]
zeckendorf2 = head . zeckendorf2Aux
 
zeckendorf2Aux :: Integer -> [[Integer]]
zeckendorf2Aux n = map reverse (aux n (tail fibs))
  where aux 0 _ = [[]]
        aux m (x:y:zs)
            | x <= m     = [x:xs | xs <- aux (m-x) zs] ++ aux m (y:zs)
            | otherwise  = []
 
-- 3ª solución
-- ===========
 
zeckendorf3 :: Integer -> [Integer]
zeckendorf3 0 = []
zeckendorf3 n = x : zeckendorf3 (n - x)
  where x = last (takeWhile (<= n) fibs)
 
-- 4ª solución
-- ===========
 
zeckendorf4 :: Integer -> [Integer]
zeckendorf4 n = aux n (reverse (takeWhile (<= n) fibs))
  where aux 0 _      = []
        aux m (x:xs) = x : aux (m-x) (dropWhile (>m-x) xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_zeckendorf :: Positive Integer -> Bool
prop_zeckendorf (Positive n) =
  all (== zeckendorf1 n)
      [zeckendorf2 n,
       zeckendorf3 n,
       zeckendorf4 n]
 
-- La comprobación es
--    λ> quickCheck prop_zeckendorf
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> zeckendorf1 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (1.49 secs, 2,380,707,744 bytes)
--    λ> zeckendorf2 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (0.07 secs, 21,532,008 bytes)
--
--    λ> zeckendorf2 (10^6)
--    [832040,121393,46368,144,55]
--    (1.40 secs, 762,413,432 bytes)
--    λ> zeckendorf3 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 542,488 bytes)
--    λ> zeckendorf4 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 536,424 bytes)
--
--    λ> length (zeckendorf3 (10^3000))
--    3947
--    (3.02 secs, 1,611,966,408 bytes)
--    λ> length (zeckendorf4 (10^2000))
--    2611
--    (0.02 secs, 10,434,336 bytes)
--
--    λ> length (zeckendorf4 (10^50000))
--    66097
--    (2.84 secs, 3,976,483,760 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Separación por posición

Definir la función

   particion :: [a] -> ([a],[a])

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

   particion [3,5,6,2]    ==  ([3,6],[5,2])
   particion [3,5,6,2,7]  ==  ([3,6,7],[5,2])
   particion "particion"  ==  ("priin","atco")

Soluciones

module Separacion_por_posicion where
 
import Data.List (partition)
import qualified Data.Vector as V ((!), fromList, length)
import Test.QuickCheck (quickCheck)
 
-- 1ª solución
-- ===========
 
particion1 :: [a] -> ([a],[a])
particion1 xs = ([x | (n,x) <- nxs, even n],
                 [x | (n,x) <- nxs, odd n])
  where nxs = enumeracion xs
 
--(numeracion xs) es la enumeración de xs. Por ejemplo,
--    enumeracion [7,9,6,8]  ==  [(0,7),(1,9),(2,6),(3,8)]
enumeracion :: [a] -> [(Int,a)]
enumeracion = zip [0..]
 
-- 2ª solución
-- ===========
 
particion2 :: [a] -> ([a],[a])
particion2 []     = ([],[])
particion2 (x:xs) = (x:zs,ys)
  where (ys,zs) = particion2 xs
 
-- 3ª solución
-- ===========
 
particion3 :: [a] -> ([a],[a])
particion3 = foldr f ([],[])
  where f x (ys,zs) = (x:zs,ys)
 
-- 4ª solución
-- ===========
 
particion4 :: [a] -> ([a],[a])
particion4 = foldr (\x (ys,zs) -> (x:zs,ys)) ([],[])
 
-- 5ª solución
-- ===========
 
particion5 :: [a] -> ([a],[a])
particion5 xs =
  ([xs!!k | k <- [0,2..n]],
   [xs!!k | k <- [1,3..n]])
  where n = length xs - 1
 
-- 6ª solución
-- ===========
 
particion6 :: [a] -> ([a],[a])
particion6 xs = (pares xs, impares xs)
 
-- (pares xs) es la lista de los elementos de xs en posiciones
-- pares. Por ejemplo,
--    pares [3,5,6,2]  ==  [3,6]
pares :: [a] -> [a]
pares []     = []
pares (x:xs) = x : impares xs
 
-- (impares xs) es la lista de los elementos de xs en posiciones
-- impares. Por ejemplo,
--    impares [3,5,6,2]  ==  [5,2]
impares :: [a] -> [a]
impares []     = []
impares (_:xs) = pares xs
 
-- 7ª solución
-- ===========
 
particion7 :: [a] -> ([a],[a])
particion7 [] = ([],[])
particion7 xs =
  ([v V.! k | k <- [0,2..n-1]],
   [v V.! k | k <- [1,3..n-1]])
  where v = V.fromList xs
        n = V.length v
 
-- 8ª solución
-- ===========
 
particion8 :: [a] -> ([a],[a])
particion8 xs =
  (map snd ys, map snd zs)
  where (ys,zs) = partition posicionPar (zip [0..] xs)
 
posicionPar :: (Int,a) -> Bool
posicionPar = even . fst
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_particion :: [Int] -> Bool
prop_particion xs =
  all (== particion1 xs)
      [particion2 xs,
       particion3 xs,
       particion4 xs,
       particion5 xs,
       particion6 xs,
       particion7 xs,
       particion8 xs]
 
-- La comprobación es
--    λ> quickCheck prop_particion
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (snd (particion1 [1..6*10^6]))
--    6000000
--    (2.74 secs, 2,184,516,080 bytes)
--    λ> last (snd (particion2 [1..6*10^6]))
--    6000000
--    (2.02 secs, 1,992,515,880 bytes)
--    λ> last (snd (particion3 [1..6*10^6]))
--    6000000
--    (3.17 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion4 [1..6*10^6]))
--    6000000
--    (3.23 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.62 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.33 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion6 [1..6*10^6]))
--    6000000
--    (1.80 secs, 888,515,960 bytes)
--    λ> last (snd (particion7 [1..6*10^6]))
--    6000000
--    (1.29 secs, 1,166,865,672 bytes)
--    λ> last (snd (particion8 [1..6*10^6]))
--    6000000
--    (0.87 secs, 3,384,516,616 bytes)
--
--    λ> last (snd (particion5 [1..10^7]))
--    10000000
--    (1.94 secs, 1,720,516,872 bytes)
--    λ> last (snd (particion7 [1..10^7]))
--    10000000
--    (2.54 secs, 1,989,215,176 bytes)
--    λ> last (snd (particion8 [1..10^7]))
--    10000000
--    (1.33 secs, 5,640,516,960 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Código de las alergias

Para la determinación de las alergia se utiliza los siguientes códigos para los alérgenos:

   Huevos ........   1
   Cacahuetes ....   2
   Mariscos ......   4
   Fresas ........   8
   Tomates .......  16
   Chocolate .....  32
   Polen .........  64
   Gatos ......... 128

Así, si Juan es alérgico a los cacahuetes y al chocolate, su puntuación es 34 (es decir, 2+32).

Los alérgenos se representan mediante el siguiente tipo de dato

  data Alergeno = Huevos
                | Cacahuetes
                | Mariscos
                | Fresas
                | Tomates
                | Chocolate
                | Polen
                | Gatos
    deriving (Enum, Eq, Show, Bounded)

Definir la función

   alergias :: Int -> [Alergeno]

tal que (alergias n) es la lista de alergias correspondiente a una puntuación n. Por ejemplo,

   λ> alergias 1
   [Huevos]
   λ> alergias 2
   [Cacahuetes]
   λ> alergias 3
   [Huevos,Cacahuetes]
   λ> alergias 5
   [Huevos,Mariscos]
   λ> alergias 255
   [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]

Soluciones

import Data.List (subsequences)
import Test.QuickCheck
 
data Alergeno =
    Huevos
  | Cacahuetes
  | Mariscos
  | Fresas
  | Tomates
  | Chocolate
  | Polen
  | Gatos
  deriving (Enum, Eq, Show, Bounded)
 
-- 1ª solución
-- ===========
 
alergias1 :: Int -> [Alergeno]
alergias1 n =
  [a | (a,c) <- zip alergenos codigos, c `elem` descomposicion n]
 
-- codigos es la lista de los códigos de los alergenos.
codigos :: [Int]
codigos = [2^x| x <- [0..7]]
 
-- (descomposicion n) es la descomposición de n como sumas de potencias
-- de 2. Por ejemplo,
--    descomposicion 3    ==  [1,2]
--    descomposicion 5    ==  [1,4]
--    descomposicion 248  ==  [8,16,32,64,128]
--    descomposicion 255  ==  [1,2,4,8,16,32,64,128]
descomposicion :: Int -> [Int]
descomposicion n =
  head [xs | xs <- subsequences codigos, sum xs == n]
 
-- 2ª solución
-- ===========
 
alergias2 :: Int -> [Alergeno]
alergias2 = map toEnum . codigosAlergias
 
-- (codigosAlergias n) es la lista de códigos de alergias
-- correspondiente a una puntuación n. Por ejemplo,
--    codigosAlergias 1  ==  [0]
--    codigosAlergias 2  ==  [1]
--    codigosAlergias 3  ==  [0,1]
--    codigosAlergias 4  ==  [2]
--    codigosAlergias 5  ==  [0,2]
--    codigosAlergias 6  ==  [1,2]
codigosAlergias :: Int -> [Int]
codigosAlergias = aux [0..7]
  where aux []     _             = []
        aux (x:xs) n | odd n     = x : aux xs (n `div` 2)
                     | otherwise = aux xs (n `div` 2)
 
-- 3ª solución
-- ===========
 
alergias3 :: Int -> [Alergeno]
alergias3 = map toEnum . codigosAlergias3
 
codigosAlergias3 :: Int -> [Int]
codigosAlergias3 n =
  [x | (x,y) <- zip [0..7] (int2bin n), y == 1]
 
-- (int2bin n) es la representación binaria del número n. Por ejemplo,
--    int2bin 10  ==  [0,1,0,1]
-- ya que 10 = 0*1 + 1*2 + 0*4 + 1*8
int2bin :: Int -> [Int]
int2bin n | n < 2     = [n]
          | otherwise = n `rem` 2 : int2bin (n `div` 2)
 
-- 4ª solución
-- ===========
 
alergias4 :: Int -> [Alergeno]
alergias4 = map toEnum . codigosAlergias4
 
codigosAlergias4 :: Int -> [Int]
codigosAlergias4 n =
  map fst (filter ((== 1) . snd) (zip  [0..7] (int2bin n)))
 
-- 5ª solución
-- ===========
 
alergias5 :: Int -> [Alergeno]
alergias5 = map (toEnum . fst)
          . filter ((1 ==) . snd)
          . zip [0..7]
          . int2bin
 
-- 6ª solución
-- ===========
 
alergias6 :: Int -> [Alergeno]
alergias6 = aux alergenos
  where aux []     _             = []
        aux (x:xs) n | odd n     = x : aux xs (n `div` 2)
                     | otherwise = aux xs (n `div` 2)
 
-- alergenos es la lista de los alergenos. Por ejemplo.
--    take 3 alergenos  ==  [Huevos,Cacahuetes,Mariscos]
alergenos :: [Alergeno]
alergenos = [minBound..maxBound]
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_alergias :: Property
prop_alergias =
  forAll (arbitrary `suchThat` esValido) $ \n ->
  all (== alergias1 n)
      [alergias2 n,
       alergias3 n,
       alergias4 n,
       alergias5 n,
       alergias6 n]
  where esValido x = 1 <= x && x <= 255
 
-- La comprobación es
--    λ> quickCheck prop_alergias
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (map alergias1 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.02 secs, 1,657,912 bytes)
--    λ> last (map alergias2 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 597,080 bytes)
--    λ> last (map alergias3 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 597,640 bytes)
--    λ> last (map alergias4 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 598,152 bytes)
--    λ> last (map alergias5 [1..255])
--    [Huevos,Cacahuetes,Mariscos,Fresas,Tomates,Chocolate,Polen,Gatos]
--    (0.01 secs, 596,888 bytes)

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Alergias.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

   *     *      *
        * *    * *
              * * *
   1     3      6

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

    1 = 1
    3 = 1 + 2
    6 = 1 + 2 + 3
   10 = 1 + 2 + 3 + 4
   15 = 1 + 2 + 3 + 4 + 5

Definir la función

   triangularesConCifras :: Int -> [Integer]

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

   take 6 (triangularesConCifras 1)   ==  [1,3,6,55,66,666]
   take 6 (triangularesConCifras 2)   ==  [10,15,21,28,36,45]
   take 6 (triangularesConCifras 3)   ==  [105,120,136,153,190,210]
   take 5 (triangularesConCifras 4)   ==  [1035,1275,1326,1378,1485]
   take 2 (triangularesConCifras 10)  ==  [1062489753,1239845706]

Soluciones

import Data.List (nub)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
triangularesConCifras1 :: Int -> [Integer]
triangularesConCifras1 n =
  [x | x <- triangulares1,
       nCifras x == n]
 
-- triangulares1 es la lista de los números triangulares. Por ejemplo,
--    take 10 triangulares1 == [1,3,6,10,15,21,28,36,45,55]
triangulares1 :: [Integer]
triangulares1 = map triangular [1..]
 
triangular :: Integer -> Integer
triangular 1 = 1
triangular n = triangular (n-1) + n
 
-- (nCifras x) es el número de cifras distintas del número x. Por
-- ejemplo,
--    nCifras 325275  ==  4
nCifras :: Integer -> Int
nCifras = length . nub . show
 
-- 2ª solución
-- ===========
 
triangularesConCifras2 :: Int -> [Integer]
triangularesConCifras2 n =
  [x | x <- triangulares2,
       nCifras x == n]
 
triangulares2 :: [Integer]
triangulares2 = [(n*(n+1)) `div` 2 | n <- [1..]]
 
-- 3ª solución
-- ===========
 
triangularesConCifras3 :: Int -> [Integer]
triangularesConCifras3 n =
  [x | x <- triangulares3,
       nCifras x == n]
 
triangulares3 :: [Integer]
triangulares3 = 1 : [x+y | (x,y) <- zip [2..] triangulares3]
 
-- 4ª solución
-- ===========
 
triangularesConCifras4 :: Int -> [Integer]
triangularesConCifras4 n =
  [x | x <- triangulares4,
       nCifras x == n]
 
triangulares4 :: [Integer]
triangulares4 = 1 : zipWith (+) [2..] triangulares4
 
-- 5ª solución
-- ===========
 
triangularesConCifras5 :: Int -> [Integer]
triangularesConCifras5 n =
  [x | x <- triangulares5,
       nCifras x == n]
 
triangulares5 :: [Integer]
triangulares5 = scanl (+) 1 [2..]
 
-- Comprobación de equivalencia
-- ============================
 
-- La 1ª propiedad es
prop_triangularesConCifras1 :: Bool
prop_triangularesConCifras1 =
  [take 2 (triangularesConCifras1 n) | n <- [1..7]] ==
  [take 2 (triangularesConCifras2 n) | n <- [1..7]]
 
-- La comprobación es
--    λ> prop_triangularesConCifras1
--    True
 
-- La 2ª propiedad es
prop_triangularesConCifras2 :: Int -> Bool
prop_triangularesConCifras2 n =
  all (== take 5 (triangularesConCifras2 n'))
      [take 5 (triangularesConCifras3 n'),
       take 5 (triangularesConCifras4 n'),
       take 5 (triangularesConCifras5 n')]
  where n' = 1 + n `mod` 9
 
-- La comprobación es
--    λ> quickCheck prop_triangularesConCifras
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> (triangularesConCifras1 3) !! 220
--    5456556
--    (2.48 secs, 1,228,690,120 bytes)
--    λ> (triangularesConCifras2 3) !! 220
--    5456556
--    (0.01 secs, 4,667,288 bytes)
--
--    λ> (triangularesConCifras2 3) !! 600
--    500010500055
--    (1.76 secs, 1,659,299,872 bytes)
--    λ> (triangularesConCifras3 3) !! 600
--    500010500055
--    (1.67 secs, 1,603,298,648 bytes)
--    λ> (triangularesConCifras4 3) !! 600
--    500010500055
--    (1.20 secs, 1,507,298,248 bytes)
--    λ> (triangularesConCifras5 3) !! 600
--    500010500055
--    (1.15 secs, 1,507,298,256 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Trenzado de listas

Definir la función

   trenza :: [a] -> [a] -> [a]

tal que (trenza xs ys) es la lista obtenida intercalando los elementos de xs e ys. Por ejemplo,

   trenza [5,1] [2,7,4]             ==  [5,2,1,7]
   trenza [5,1,7] [2..]             ==  [5,2,1,3,7,4]
   trenza [2..] [5,1,7]             ==  [2,5,3,1,4,7]
   take 8 (trenza [2,4..] [1,5..])  ==  [2,1,4,5,6,9,8,13]

Soluciones

import Test.QuickCheck (quickCheck)
 
-- 1ª solución
-- ===========
 
trenza1 :: [a] -> [a] -> [a]
trenza1 []     _      = []
trenza1 _      []     = []
trenza1 (x:xs) (y:ys) = x : y : trenza1 xs ys
 
-- 2ª solución
-- ===========
 
trenza2 :: [a] -> [a] -> [a]
trenza2 (x:xs) (y:ys) = x : y : trenza2 xs ys
trenza2 _      _      = []
 
-- 3ª solución
-- ===========
 
trenza3 :: [a] -> [a] -> [a]
trenza3 xs ys = concat [[x,y] | (x,y) <- zip xs ys]
 
-- 4ª solución
-- ===========
 
trenza4 :: [a] -> [a] -> [a]
trenza4 xs ys = concat (zipWith par xs ys)
 
par :: a -> a -> [a]
par x y = [x,y]
 
-- 5ª solución
-- ===========
 
-- Explicación de eliminación de argumentos en composiciones con varios
-- argumentos:
 
f :: Int -> Int
f x = x + 1
 
g :: Int -> Int -> Int
g x y = x + y
 
h1, h2, h3, h4, h5, h6, h7 :: Int -> Int -> Int
h1 x y  = f (g x y)
h2 x y  = f ((g x) y)
h3 x y  = (f . (g x)) y
h4 x    = f . (g x)
h5 x    = (f .) (g x)
h6 x    = ((f .) . g) x
h7      = (f .) . g
 
prop_composicion :: Int -> Int -> Bool
prop_composicion x y =
  all (== h1 x y)
      [p x y | p <- [h2, h3, h4, h5, h6, h7]]
 
-- λ> quickCheck prop_composicion
-- +++ OK, passed 100 tests.
 
-- En general,
--    f . g             --> \x -> f (g x)
--    (f .) . g         --> \x y -> f (g x y)
--    ((f .) .) . g     --> \x y z -> f (g x y z)
--    (((f .) .) .) . g --> \w x y z -> f (g w x y z)
 
trenza5 :: [a] -> [a] -> [a]
trenza5 = (concat .) . zipWith par
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_trenza :: [Int] -> [Int] -> Bool
prop_trenza xs ys =
  all (== trenza1 xs ys)
      [trenza2 xs ys,
       trenza3 xs ys,
       trenza4 xs ys,
       trenza5 xs ys]
 
-- La comprobación es
--    λ> quickCheck prop_trenza
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (trenza1 [1,1..] [1..4*10^6])
--    4000000
--    (2.33 secs, 1,472,494,952 bytes)
--    λ> last (trenza2 [1,1..] [1..4*10^6])
--    4000000
--    (2.24 secs, 1,376,494,928 bytes)
--    λ> last (trenza3 [1,1..] [1..4*10^6])
--    4000000
--    (1.33 secs, 1,888,495,048 bytes)
--    λ> last (trenza4 [1,1..] [1..4*10^6])
--    4000000
--    (0.76 secs, 1,696,494,968 bytes)
--    λ> last (trenza5 [1,1..] [1..4*10^6])
--    4000000
--    (0.76 secs, 1,696,495,064 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>