Menu Close

Etiqueta: zip

Codificación de Fibonacci

La codificación de Fibonacci de un número n es una cadena d = d(0)d(1)…d(k-1)d(k) de ceros y unos tal que

   n = d(0)*F(2) + d(1)*F(3) +...+ d(k-1)*F(k+1) 
   d(k-1) = d(k) = 1

donde F(i) es el i-ésimo término de la sucesión de Fibonacci.

   0,1,1,2,3,5,8,13,21,34,...

Por ejemplo. La codificación de Fibonacci de 4 es “1011” ya que los dos últimos elementos son iguales a 1 y

   1*F(2) + 0*F(3) + 1*F(4) = 1*1 + 0*2 + 1*3 = 4

La codificación de Fibonacci de los primeros números se muestra en la siguiente tabla

    1  = 1     = F(2)           ≡       11
    2  = 2     = F(3)           ≡      011
    3  = 3     = F(4)           ≡     0011
    4  = 1+3   = F(2)+F(4)      ≡     1011
    5  = 5     = F(5)           ≡    00011
    6  = 1+5   = F(2)+F(5)      ≡    10011
    7  = 2+5   = F(3)+F(5)      ≡    01011
    8  = 8     = F(6)           ≡   000011
    9  = 1+8   = F(2)+F(6)      ≡   100011
   10  = 2+8   = F(3)+F(6)      ≡   010011
   11  = 3+8   = F(4)+F(6)      ≡   001011
   12  = 1+3+8 = F(2)+F(4)+F(6) ≡   101011
   13  = 13    = F(7)           ≡  0000011
   14  = 1+13  = F(2)+F(7)      ≡  1000011

Definir la función

   codigoFib :: Integer -> String

tal que (codigoFib n) es la codificación de Fibonacci del número n. Por ejemplo,

   λ> codigoFib 65
   "0100100011"
   λ> [codigoFib n | n <- [1..7]]
   ["11","011","0011","1011","00011","10011","01011"]

Soluciones

import Data.List
import Data.Array
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
codigoFib1 :: Integer -> String
codigoFib1 = (concatMap show) . codificaFibLista
 
-- (codificaFibLista n) es la lista correspondiente a la codificación de
-- Fibonacci del número n. Por ejemplo,
--    λ> codificaFibLista 65
--    [0,1,0,0,1,0,0,0,1,1]
--    λ> [codificaFibLista n | n <- [1..7]]
--    [[1,1],[0,1,1],[0,0,1,1],[1,0,1,1],[0,0,0,1,1],[1,0,0,1,1],[0,1,0,1,1]]
codificaFibLista :: Integer -> [Integer]
codificaFibLista n = map f [2..head xs] ++ [1]
  where xs = map fst (descomposicion n)
        f i | elem i xs = 1
            | otherwise = 0
 
-- (descomposicion n) es la lista de pares (i,f) tales que f es el
-- i-ésimo número de Fibonacci y las segundas componentes es una
-- sucesión decreciente de números de Fibonacci cuya suma es n. Por
-- ejemplo, 
--    descomposicion 65  ==  [(10,55),(6,8),(3,2)]
--    descomposicion 66  ==  [(10,55),(6,8),(4,3)]
descomposicion :: Integer -> [(Integer, Integer)]
descomposicion 0 = []
descomposicion 1 = [(2,1)]
descomposicion n = (i,x) : descomposicion (n-x)
  where (i,x) = fibAnterior n
 
-- (fibAnterior n) es el mayor número de Fibonacci menor o igual que
-- n. Por ejemplo,
--    fibAnterior 33  ==  (8,21)
--    fibAnterior 34  ==  (9,34)
fibAnterior :: Integer -> (Integer, Integer)
fibAnterior n = last (takeWhile p fibsConIndice)
  where p (i,x) = x <= n
 
-- fibsConIndice es la sucesión de los números de Fibonacci junto con
-- sus índices. Por ejemplo,
--    λ> take 10 fibsConIndice
--    [(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13),(8,21),(9,34)]
fibsConIndice :: [(Integer, Integer)]
fibsConIndice = zip [0..] fibs
 
-- fibs es la sucesión de Fibonacci. Por ejemplo, 
--    take 10 fibs  ==  [0,1,1,2,3,5,8,13,21,34]
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
 
--- 2ª solución
-- ============
 
codigoFib2 :: Integer -> String
codigoFib2 = (concatMap show) . elems . codificaFibVec
 
-- (codificaFibVec n) es el vector correspondiente a la codificación de
-- Fibonacci del número n. Por ejemplo,
--    λ> codificaFibVec 65
--    array (0,9) [(0,0),(1,1),(2,0),(3,0),(4,1),(5,0),(6,0),(7,0),(8,1),(9,1)]
--    λ> [elems (codificaFibVec n) | n <- [1..7]]
--    [[1,1],[0,1,1],[0,0,1,1],[1,0,1,1],[0,0,0,1,1],[1,0,0,1,1],[0,1,0,1,1]]
codificaFibVec :: Integer -> Array Integer Integer
codificaFibVec n = accumArray (+) 0 (0,a+1) ((a+1,1):is) 
  where is = [(i-2,1) | (i,x) <- descomposicion n]
        a  = fst (head is)
 
-- Comparación de eficiencia
-- =========================
--    λ> head [n | n <- [1..], length (codigoFib1 n) > 25]
--    121393
--    (14.37 secs, 3135674112 bytes)
--    λ> :r
--    Ok, modules loaded: Main.
--    λ> head [n | n <- [1..], length (codigoFib2 n) > 25]
--    121393
--    (12.04 secs, 2762190920 bytes)
 
-- Propiedades
-- ===========
 
-- Usaremos la 2ª definición
codigoFib :: Integer -> String
codigoFib = codigoFib2
 
-- Prop.: La función descomposicion es correcta:
propDescomposicionCorrecta :: Integer -> Property
propDescomposicionCorrecta n =
  n >= 0 ==> n == sum (map snd (descomposicion n))
 
-- La comprobación es
--    λ> quickCheck propDescomposicionCorrecta
--    +++ OK, passed 100 tests.
 
-- Prop.: Todo número natural se puede descomponer en suma de números de
-- la sucesión de Fibonacci.
propDescomposicion :: Integer -> Property
propDescomposicion n =
  n >= 0 ==> not (null (descomposicion n))
 
-- La comprobación es
--    λ> quickCheck propDescomposicion
--    +++ OK, passed 100 tests.
 
-- Prop.: Las codificaciones de Fibonacci tienen como mínimo 2 elementos.
prop1 :: Integer -> Property
prop1 n = n > 0 ==> length (codigoFib n) >= 2
 
-- La comprobación es
--    λ> quickCheck prop1
--    +++ OK, passed 100 tests.
 
-- Prop.: Los dos últimos elementos de las codificaciones de Fibonacci
-- son iguales a 1.
prop2 :: Integer -> Property
prop2 n = n > 0 ==> take 2 (reverse (codigoFib n)) == "11"
 
-- La comprobación es
--    λ> quickCheck prop2
--    +++ OK, passed 100 tests.
 
-- Prop.: En las codificaciones de Fibonacci, la cadena "11" sólo
-- aparece una vez y la única vez que aparece es al final.
prop3 :: Integer -> Property
prop3 n = 
  n > 0 ==> not (isInfixOf "11" (drop 2 (reverse (codigoFib n))))
 
-- La comprobación es
--    λ> quickCheck prop3
--    +++ OK, passed 100 tests.

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

   reparto :: Int -> [Int] -> [(Int,Int)]

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

   ghci> reparto 7 [340000,280000,160000,60000,15000]
   [(1,3),(2,3),(3,1)]
   ghci> reparto 21 [391000,311000,184000,73000,27000,12000,2000]
   [(1,9),(2,7),(3,4),(4,1)]

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

import Data.List (sort, group)
 
-- Para los ejemplos que siguen, se usará la siguiente ditribución de
-- votos entre 5 partidos.
ejVotos :: [Int]
ejVotos = [340000,280000,160000,60000,15000]
 
-- 1ª solución
-- ===========
 
reparto :: Int -> [Int] -> [(Int,Int)]
reparto n vs = 
  [(x,1 + length xs) | (x:xs) <- group (sort (repartoAux n vs))] 
 
-- (repartoAux n vs) es el número de los partidos, cuyos votos son vs, que
-- obtienen los n escaños. Por ejemplo,
--    ghci> repartoAux 7 ejVotos
--    [1,2,1,3,2,1,2]
repartoAux :: Int -> [Int] -> [Int]
repartoAux n vs = map snd (repartoAux' n vs)
 
-- (repartoAux' n vs) es la lista formada por los n restos mayores
-- correspondientes a la lista de votos vs. Por ejemplo,
--    ghci> repartoAux' 7 ejVotos
--    [(340000,1),(280000,2),(170000,1),(160000,3),(140000,2),(113333,1),
--     (93333,2)]
repartoAux' :: Int -> [Int] -> [(Int,Int)]
repartoAux' n vs = 
  take n (reverse (sort (concatMap (restos n) (votosPartidos vs))))
 
-- (votosPartidos vs) es la lista con los pares formados por los votos y
-- el número de cada partido. Por ejemplo, 
--    ghci> votosPartidos ejVotos
--    [(340000,1),(280000,2),(160000,3),(60000,4),(15000,5)]
votosPartidos :: [Int] -> [(Int,Int)]
votosPartidos vs = zip vs [1..]
 
-- (restos n (x,i)) es la lista obtenidas dividiendo n entre 1, 2,..., n.
-- Por ejemplo, 
--    ghci> restos 5 (340000,1)
--    [(340000,1),(170000,1),(113333,1),(85000,1),(68000,1)]
restos :: Int -> (Int,Int) -> [(Int,Int)]
restos n (x,i) = [(x `div` k,i) | k <- [1..n]]
 
-- 2ª solución
-- ===========
 
reparto2 :: Int -> [Int] -> [(Int,Int)]
reparto2 n xs = 
  ( map (\x -> (head x, length x))  
  . group  
  . sort  
  . map snd  
  . take n  
  . reverse  
  . sort
  ) [(x `div` i, p) | (x,p) <- zip xs [1..], i <- [1..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

   7       es divisible por 1
   74      es divisible por 2
   741     es divisible por 3
   7415 no es divisible por 4

Definir la función

   ordenDeDivisibilidad :: Integer -> Int

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

   ordenDeDivisibilidad 74156                      ==  3
   ordenDeDivisibilidad 12                         ==  2
   ordenDeDivisibilidad 7                          ==  1
   ordenDeDivisibilidad 3608528850368400786036725  ==  25

Soluciones

import Data.List (inits)
 
-- 1ª definición de ordenDeDivisibilidad
-- =====================================
 
ordenDeDivisibilidad :: Integer -> Int
ordenDeDivisibilidad n = 
  length (takeWhile (\(x,k) -> x `mod` k == 0) (zip (sucDigitos n) [1..]))
 
-- (sucDigitos x) es la sucesión de los dígitos de x. Por ejemplo,
--    sucDigitos 325    ==  [3,32,325]
--    sucDigitos 32050  ==  [3,32,320,3205,32050]
sucDigitos :: Integer -> [Integer]
sucDigitos n = 
    [n `div` (10^i) | i <- [k-1,k-2..0]]
    where k = length (show n)
 
-- 2ª definición de sucDigitos
sucDigitos2 :: Integer -> [Integer]
sucDigitos2 n = [read xs | xs <- aux (show n)]
  where aux []     = []
        aux (d:ds) = [d] : map (d:) (aux ds)
 
-- 3ª definición de sucDigitos
sucDigitos3 :: Integer -> [Integer]
sucDigitos3 n = 
  [read (take k ds) | k <- [1..length ds]]
  where ds = show n
 
-- 4ª definición de sucDigitos
sucDigitos4 :: Integer -> [Integer]
sucDigitos4 n = [read xs | xs <- tail (inits (show n))]
 
-- 5ª definición de sucDigitos
sucDigitos5 :: Integer -> [Integer]
sucDigitos5 n = map read (tail (inits (show n)))
 
-- 6ª definición de sucDigitos
sucDigitos6 :: Integer -> [Integer]
sucDigitos6 = map read . (tail . inits . show)
 
-- Eficiencia de las definiciones de sucDigitos
--    ghci> length (sucDigitos (10^5000))
--    5001
--    (0.01 secs, 1550688 bytes)
--    ghci> length (sucDigitos2 (10^5000))
--    5001
--    (1.25 secs, 729411872 bytes)
--    ghci> length (sucDigitos3 (10^5000))
--    5001
--    (0.02 secs, 2265120 bytes)
--    ghci> length (sucDigitos4 (10^5000))
--    5001
--    (1.10 secs, 728366872 bytes)
--    ghci> length (sucDigitos5 (10^5000))
--    5001
--    (1.12 secs, 728393864 bytes)
--    ghci> length (sucDigitos6 (10^5000))
--    5001
--    (1.20 secs, 728403052 bytes)
-- 
--    ghci> length (sucDigitos (10^3000000))
--    3000001
--    (2.73 secs, 820042696 bytes)
--    ghci> length (sucDigitos3 (10^3000000))
--    3000001
--    (3.69 secs, 820043688 bytes)
 
-- 2ª definición de ordenDeDivisibilidad
-- =====================================
 
ordenDeDivisibilidad2 :: Integer -> Int
ordenDeDivisibilidad2 x =
  length
  $ takeWhile (==0)
  $ zipWith (mod . read) (tail $ inits $ show x) [1..]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Término ausente en una progresión aritmética

Una progresión aritmética es una sucesión de números tales que la diferencia de dos términos sucesivos cualesquiera de la sucesión es constante.

Definir la función

   ausente :: Integral a => [a] -> a

tal que (ausente xs) es el único término ausente de la progresión aritmética xs. Por ejemplo,

   ausente [3,7,9,11]               ==  5
   ausente [3,5,9,11]               ==  7
   ausente [3,5,7,11]               ==  9
   ausente ([1..9]++[11..])         ==  10
   ausente ([1..10^6] ++ [2+10^6])  ==  1000001

Nota. Se supone que la lista tiene al menos 3 elementos, que puede ser infinita y que sólo hay un término de la progresión aritmética que no está en la lista.

Soluciones

import Data.List (group, genericLength)
 
-- 1ª solución
ausente :: Integral a => [a] -> a
ausente (x1:xs@(x2:x3:_))
  | d1 == d2     = ausente xs
  | d1 == 2 * d2 = x1 + d2
  | d2 == 2 * d1 = x2 + d1
  where d1 = x2 - x1
        d2 = x3 - x2          
 
-- 2ª solución
ausente2 :: Integral a => [a] -> a
ausente2 s@(x1:x2:x3:xs) 
  | x1 + x3 /= 2 * x2 = x1 + (x3 - x2)
  | otherwise         = head [a | (a,b) <- zip [x1,x2..] s
                                , a /= b]
 
-- 3ª solución
ausente3 :: Integral a => [a] -> a
ausente3  xs@(x1:x2:_) 
  | null us   = x1 + v
  | otherwise = x2 + u * genericLength (u:us) 
  where ((u:us):(v:_):_) = group (zipWith (-) (tail xs) xs)
 
-- Comparación de eficiencia
--    ghci> let n = 10^6 in ausente1 ([1..n] ++ [n+2])
--    1000001
--    (3.53 secs, 634729880 bytes)
--    
--    ghci> let n = 10^6 in ausente2 ([1..n] ++ [n+2])
--    1000001
--    (0.86 secs, 346910784 bytes)
--    
--    ghci> let n = 10^6 in ausente3 ([1..n] ++ [n+2])
--    1000001
--    (1.22 secs, 501521888 bytes)
--    
--    ghci> let n = 10^7 in ausente2 ([1..n] ++ [n+2])
--    10000001
--    (8.68 secs, 3444142568 bytes)
--    
--    ghci> let n = 10^7 in ausente3 ([1..n] ++ [n+2])
--    10000001
--    (12.59 secs, 4975932088 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

   a(1) = 3+1                = 4.0
   a(2) = 3+(1/(6+9))        = 3.066666666666667
   a(3) = 3+(1/(6+9/(6+25))) = 3.158974358974359

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,
     aproximacionPi 1     ==  4.0
     aproximacionPi 2     ==  3.066666666666667
     aproximacionPi 3     ==  3.158974358974359
     aproximacionPi 10    ==  3.141287132741557
     aproximacionPi 100   ==  3.141592398533554
     aproximacionPi 1000  ==  3.1415926533392926
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Soluciones

import Graphics.Gnuplot.Simple
 
-- fraccionPi es la representación de la fracción continua de pi como un
-- par de listas infinitas.
fraccionPi :: [(Integer, Integer)]
fraccionPi = zip (3 : [6,6..]) (map (^2) [1,3..])
 
-- (aproximacionFC n fc) es la n-ésima aproximación de la fracción
-- continua fc (como un par de listas).  
aproximacionFC :: Int -> [(Integer, Integer)] -> Double
aproximacionFC n =
  foldr (\(a,b) z -> fromIntegral a + fromIntegral b / z) 1 . take n
 
aproximacionPi :: Int -> Double
aproximacionPi n =
  aproximacionFC n fraccionPi
 
grafica :: [Int] -> IO ()
grafica xs = 
  plotList [Key Nothing]
           [(k,aproximacionPi k) | k <- xs]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

   2, 3, 5, 7, 11
   1, 2, 2, 4 
   1, 0, 2
   1, 2 
   1

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

   2, 3, 5, 7, 11, 13, 17, 19 
   1, 2, 2, 4,  2,  4,  2  
   1, 0, 2, 2,  2,  2 
   1, 2, 0, 0,  0 
   1, 2, 0, 0 
   1, 2, 0 
   1, 2 
   1

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

    2
    3, 1
    5, 2, 1
    7, 2, 0, 1
   11, 4, 2, 2, 1
   13, 2, 2, 0, 2, 1
   17, 4, 2, 0, 0, 2, 1
   19, 2, 2, 0, 0, 0, 2, 1

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

   siguiente           :: Integer -> [Integer] -> [Integer]
   triangulo           :: [[Integer]]
   conjeturaGilbreath  :: Int -> Bool

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…]. Por ejemplo,
     siguiente  7 [5,2,1]               ==  [7,2,0,1]
     siguiente 29 [23,4,2,0,0,0,0,2,1]  ==  [29,6,2,0,0,0,0,0,2,1]
  • triangulo es el triángulo de Gilbreath. Por ejemplo,
     λ> take 10 triangulo
     [[ 2],
      [ 3,1],
      [ 5,2,1],
      [ 7,2,0,1],
      [11,4,2,2,1],
      [13,2,2,0,2,1],
      [17,4,2,0,0,2,1],
      [19,2,2,0,0,0,2,1],
      [23,4,2,0,0,0,0,2,1],
      [29,6,2,0,0,0,0,0,2,1]]
  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,
     λ> conjeturaGilbreath 1000
     True

Soluciones

import Data.Numbers.Primes
 
siguiente :: Integer -> [Integer] -> [Integer]
siguiente x ys = scanl (\m n -> abs (m-n)) x ys 
 
triangulo :: [[Integer]]
triangulo = 
  [2] : [siguiente x ys | (x,ys) <- zip (tail primes) triangulo]
 
conjeturaGilbreath :: Int -> Bool
conjeturaGilbreath n = all p (tail (take n triangulo))
  where p xs = last xs == 1

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“La simplicidad es la última sofisticación.”

Leonardo da Vinci.

Distancia esperada entre dos puntos de un cuadrado unitario

Definir, por simulación, la función

   distanciaEsperada :: Int -> IO Double

tal que (distanciaEsperada n) es la distancia esperada entre n puntos del cuadrado unitario de vértices opuestos (0,0) y (1,1), elegidos aleatoriamente. Por ejemplo,

   distanciaEsperada 10     ==  0.43903617921423593
   distanciaEsperada 10     ==  0.6342350621260004
   distanciaEsperada 100    ==  0.5180418995364429
   distanciaEsperada 100    ==  0.5288261085653962
   distanciaEsperada 1000   ==  0.5143804432569616
   distanciaEsperada 10000  ==  0.5208360147922616

El valor exacto de la distancia esperada es

   ve = (sqrt(2) + 2 + 5*log(1+sqrt(2)))/15 = 0.5214054331647207

Definir la función

   graficaDistanciaEsperada :: [Int] -> IO ()

tal que (graficaDistanciaEsperadan n) dibuja las gráficas de los pares (n, distanciaEsperada n) para n en la lista creciente ns junto con la recta y = ve, donde ve es el valor exacto. Por ejemplo, (graficaDistanciaEsperada [10,30..4000]) dibuja

Soluciones

import Data.List     (genericLength)
import System.Random (newStdGen, randomRIO, randomRs)
import Control.Monad (replicateM)
import Graphics.Gnuplot.Simple
 
-- 1ª solución
-- ===========
 
-- Un punto es un par de números reales.
type Punto = (Double, Double)
 
-- (puntosDelCuadrado n) es una lista de n puntos del cuadrado
-- unitario de vértices opuestos (0,0) y (1,1). Por ejemplo, 
--    λ> puntosDelCuadrado 3
--    [(0.6067427807212623,0.24785843546479303),
--     (0.9579158098726746,8.047408846191773e-2),
--     (0.856758357789639,0.9814972717003113)]
--    λ> puntosDelCuadrado 3
--    [(1.9785720974027532e-2,0.6343219201012211),
--     (0.21903717179861604,0.20947986189590784),
--     (0.4739903340716357,1.2262474491489095e-2)]
puntosDelCuadrado :: Int -> IO [Punto]
puntosDelCuadrado n = do
  gen <- newStdGen
  let xs = randomRs (0,1) gen
      (as, ys) = splitAt n xs
      (bs, _)  = splitAt n ys
  return (zip as bs)
 
-- (distancia p1 p2) es la distancia entre los puntos p1 y p2. Por
-- ejemplo,
--    distancia (0,0) (3,4)  ==  5.0
distancia :: Punto -> Punto -> Double
distancia (x1,y1) (x2,y2) = sqrt ((x1-x2)^2+(y1-y2)^2)
 
-- (distancias ps) es la lista de las distancias entre los elementos 1º
-- y 2º, 3º y 4º, ... de ps. Por ejemplo,
--    distancias [(0,0),(3,4),(1,1),(7,9)]  ==  [5.0,10.0]
distancias :: [Punto] -> [Double]
distancias []         = []
distancias (p1:p2:ps) = distancia p1 p2 : distancias ps
 
-- (media xs) es la media aritmética de los elementos de xs. Por ejemplo,
--    media [1,7,1]  ==  3.0
media :: [Double] -> Double
media xs =
  sum xs / genericLength xs
 
-- (distanciaEsperada n) es la distancia esperada entre n puntos
-- aleatorios en el cuadrado unitario. Por ejemplo,
distanciaEsperada :: Int -> IO Double
distanciaEsperada n = do
  ps <- puntosDelCuadrado (2*n)
  return (media (distancias ps))
 
-- 2ª solución
-- ===========
 
distanciaEsperada2 :: Int -> IO Double
distanciaEsperada2 n = do
  ps <- puntosDelCuadrado2 (2*n)
  return (media (distancias ps))
 
-- (puntosDelCuadrado2 n) es una lista de n puntos del cuadrado
-- unitario de vértices opuestos (0,0) y (1,1). Por ejemplo, 
--    λ> puntosDelCuadrado2 3
--    [(0.9836699352638695,0.5143414844876929),
--     (0.8715237339877027,0.9905157772823782),
--     (0.29502946161912935,0.16889248111565192)]
--    λ> puntosDelCuadrado2 3
--    [(0.20405570457106392,0.47574116941605116),
--     (0.7128182811364226,3.201419787777959e-2),
--     (0.5576891231675457,0.9994474730919443)]
puntosDelCuadrado2 :: Int -> IO [Punto]
puntosDelCuadrado2 n =
  replicateM n puntoDelCuadrado2
 
-- (puntoDelCuadrado2 n) es un punto del cuadrado unitario de vértices
-- opuestos (0,0) y (1,1). Por ejemplo,  
--    λ> puntoDelCuadrado2
--    (0.7512991739803923,0.966436016138578)
--    λ> puntoDelCuadrado2
--    (0.7306826194847795,0.8984574498515252)
puntoDelCuadrado2 :: IO Punto
puntoDelCuadrado2 = do
  x <- randomRIO (0, 1.0)
  y <- randomRIO (0, 1.0)
  return (x, y)
 
-- 3ª solución
-- ===========
 
distanciaEsperada3 :: Int -> IO Double
distanciaEsperada3 n = do
  ds <- distanciasAleatorias n
  return (media ds)
 
-- (distanciasAleatorias n) es la lista de las distancias aleatorias
-- entre n pares de puntos del cuadrado unitario. Por ejemplo, 
--    λ> distanciasAleatorias 3
--    [0.8325589110989705,0.6803336613847881,0.1690051224111662]
--    λ> distanciasAleatorias 3
--    [0.3470124940889039,0.459002678562019,0.7665623634969365]
distanciasAleatorias :: Int -> IO [Double]
distanciasAleatorias n = 
  replicateM n distanciaAleatoria
 
-- distanciaAleatoria es la distancia de un par de punto del cuadrado
-- unitario elegidos aleatoriamente. Por ejemplo,
--    λ> distanciaAleatoria
--    0.8982361685460913
--    λ> distanciaAleatoria
--    0.9777207485571939
--    λ> distanciaAleatoria
--    0.6042223512347842
distanciaAleatoria :: IO Double
distanciaAleatoria = do 
  p1 <- puntoDelCuadrado2
  p2 <- puntoDelCuadrado2
  return (distancia p1 p2)
 
-- 4ª solución
-- ===========
 
distanciaEsperada4 :: Int -> IO Double
distanciaEsperada4 n =
  media <$> distanciasAleatorias n
 
-- Gráfica
-- =======
 
graficaDistanciaEsperada :: [Int] -> IO ()
graficaDistanciaEsperada ns = do
  ys <- mapM distanciaEsperada ns
  let e = (sqrt(2) + 2 + 5*log(1+sqrt(2)))/15
  plotLists [ Key Nothing
            -- , PNG "Distancia_esperada_entre_dos_puntos.png"
            ]
            [ zip ns ys
            , zip ns (repeat e)]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“El matemático no estudia las matemáticas puras porque sean útiles; las estudia porque se deleita en ellas y se deleita en ellas porque son hermosas.”

Henri Poincaré.

Primero no consecutivo

Definir la función

   primeroNoConsecutivo :: (Eq a,Enum a) => [a] -> Maybe a

tal que (primeroNoConsecutivo xs) es el primer elemento de la lista xs que no es igual al siguiente de su elemento anterior en xs o Nothing si tal elemento no existe. Por ejemplo

   primeroNoConsecutivo [1,2,3,4,6,7,8] == Just 6
   primeroNoConsecutivo "bcdfg"         == Just 'f'
   primeroNoConsecutivo "bcdef"         == Nothing

Soluciones

import Data.Maybe (listToMaybe)
 
-- 1ª solución
primeroNoConsecutivo1 :: (Eq a, Enum a) => [a] -> Maybe a
primeroNoConsecutivo1 xs
  | null ys   = Nothing
  | otherwise = Just (head ys)
  where ys = [y | (z,y) <- zip xs (tail xs), y /= succ z]
 
-- 2ª solución
primeroNoConsecutivo2 :: (Eq a, Enum a) => [a] -> Maybe a
primeroNoConsecutivo2 xs = 
  listToMaybe [y | (z,y) <- zip xs (tail xs), y /= succ z]
 
-- 3ª solución
primeroNoConsecutivo3 :: (Eq a,Enum a) => [a] -> Maybe a
primeroNoConsecutivo3 (x:y:zs)
  | succ x /= y = Just y 
  | otherwise   = primeroNoConsecutivo3 (y:zs)
primeroNoConsecutivo3 _ = Nothing
 
-- 4ª solución
primeroNoConsecutivo :: (Eq a,Enum a) => [a] -> Maybe a
primeroNoConsecutivo [] = Nothing
primeroNoConsecutivo (x:ys) = aux x ys
  where aux _ [] = Nothing
        aux x' (z:zs) | z == succ x' = aux z zs
                      | otherwise    = Just z

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“La única enseñanza que un profesor puede dar, en mi opinión, es la de pensar delante de sus alumnos.”

Henri Lebesgue.

Grafo de una FNC (fórmula en forma normal conjuntiva)

Para reducir el problema del clique a SAT se comienza asociando a cada fórmula F en FNC un grafo G de forma que F es saisfacible si, y sólo si, G tiene un clique con tantos nodos como cláusulas tiene F.

Los nodos del grafo de F son los literales de las cláusulas de F junto con el número de la cláusula. Por ejemplo, la lista de nodos de la FNC [[1,-2,3],[-1,2],[-2,3]] es

   [(0,1),(0,-2),(0,3),
    (1,-1),(1,2),
    (2,-2),(2,3)]

En el grafo de F, hay un arco entre dos nodos si, y solo si, corresponden a cláusulas distintas y sus literales no son complementarios. Por ejemplo,

  • hay un arco entre (0,1) y (1,2) [porque son de cláusulas distintas (0 y 1) y sus literales (1 y 2) no son complementarios.
  • no hay un arco entre (0,1) y (1,-1) [porque sus literales (1 y -1) no son complementarios.
  • no hay un arco entre (0,1) y (0,3) [porque son de la misma cláusula (la 0)].

Nota: En este ejercicio se usará los conceptos de los anteriores importando los módulos Evaluacion_de_FNC y Grafo.

Definir las funciones

   nodosFNC :: FNC -> [(Int,Literal)]
   grafoFNC :: FNC -> Grafo (Int,Literal)

tales que

  • (nodosFNC f) es la lista de los nodos del grafo de f. Por ejemplo,
     λ> nodosFNC [[1,-2,3],[-1,2],[-2,3]]
     [(0,1),(0,-2),(0,3),(1,-1),(1,2),(2,-2),(2,3)]
  • (grafo FNC f) es el grafo de f. Por ejemplo,
     λ> grafoFNC [[1,-2,3],[-1,2],[-2,3]]
     [ ((0,1),(1,2)),  ((0,1),(2,-2)), ((0,1),(2,3)),
       ((0,-2),(1,-1)),((0,-2),(2,-2)),((0,-2),(2,3)),
       ((0,3),(1,-1)), ((0,3),(1,2)),  ((0,3),(2,-2)),((0,3),(2,3)),
       ((1,-1),(2,-2)),((1,-1),(2,3)),
       ((1,2),(2,3))]
     λ> grafoFNC [[1,2],[1,-2],[-1,2],[-1,-2]]
     [((0,1),(1,1)),((0,1),(1,-2)),((0,1),(2,2)),((0,1),(3,-2)),
      ((0,2),(1,1)),((0,2),(2,-1)),((0,2),(2,2)),((0,2),(3,-1)),
      ((1,1),(2,2)),((1,1),(3,-2)),
      ((1,-2),(2,-1)),((1,-2),(3,-1)),((1,-2),(3,-2)),
      ((2,-1),(3,-1)),((2,-1),(3,-2)),
      ((2,2),(3,-1))]

Soluciones

module Grafo_FNC where
 
import Evaluacion_de_FNC
import Grafo
import Data.List (tails)
 
nodosFNC :: FNC -> [(Int,Literal)]
nodosFNC f = 
  [(i,x) | (i,xs) <- zip [0..] f
         , x <- xs]
 
grafoFNC :: FNC -> Grafo (Int,Literal)
grafoFNC f = 
  [ ((i,x),(i',x'))
  | ((i,x),(i',x')) <- parejas (nodosFNC f)
  , i' /= i
  , x' /= negate x]
 
-- (parejas xs) es la lista de las parejas formados por los elementos de
-- xs y sus siguientes en xs. Por ejemplo, 
--    parejas [1..4] == [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
parejas :: [a] -> [(a,a)]
parejas xs =
  [(x,y) | (x:ys) <- tails xs
         , y <- ys]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Las matemáticas tienen dos caras: son la ciencia rigurosa de Euclides, pero también son algo más. La matemática presentada a la manera euclidiana aparece como una ciencia sistemática y deductiva; pero la matemática en ciernes aparece como una ciencia experimental e inductiva. Ambos aspectos son tan antiguos como la propia ciencia de las matemáticas.”

George Pólya.

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

   mobius :: Integer -> Integer
   mertens :: Integer -> Integer
   graficaMertens :: Integer -> IO ()

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,
     mobius 6   ==  1
     mobius 30  ==  -1
     mobius 12  ==  0
  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,
     mertens 1     ==  1
     mertens 2     ==  0
     mertens 3     ==  -1
     mertens 5     ==  -2
     mertens 661   ==  -11
     mertens 1403  ==  11
  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
mobius :: Integer -> Integer
mobius n | tieneRepetidos xs = 0
         | otherwise         = (-1)^(length xs)
  where xs = primeFactors n
 
tieneRepetidos :: [Integer] -> Bool
tieneRepetidos xs =
  or [x == y | (x,y) <- zip xs (tail xs)]
 
mertens :: Integer -> Integer
mertens n = sum (map mobius [1..n])
 
-- Definición de graficaMertens
-- ============================
 
graficaMertens :: Integer -> IO ()
graficaMertens n = do
  plotLists [ Key Nothing
            , Title "Conjetura de Mertens"
            , PNG "La_conjetura_de_Mertens.png"
            ]
            [ [mertens k | k <- [1..n]]
            , raices
            , map negate raices
            ]
 
  where
    raices = [ceiling (sqrt k) | k <- [1..fromIntegral n]]
 
-- Conjetura de Mertens
-- ====================
 
-- La conjetura es
conjeturaDeMertens :: Integer -> Property
conjeturaDeMertens n =
  n > 1
  ==>
  abs (mertens n) < ceiling (sqrt n')
  where n' = fromIntegral n
 
-- La comprobación es
--    λ> quickCheck conjeturaDeMertens
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“El control de la complejidad es la esencia de la programación informática.”

Brian Kernighan.