Índices de valores verdaderos

Definir la función

tal que (indicesVerdaderos xs) es la lista infinita de booleanos tal que sólo son verdaderos los elementos cuyos índices pertenecen a la lista estrictamente creciente xs. Por ejemplo,

Soluciones

[schedule expon=’2022-04-19′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-19′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Indices_verdaderos.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

Suma de segmentos iniciales

Los segmentos iniciales de [3,1,2,5] son [3], [3,1], [3,1,2] y [3,1,2,5]. Sus sumas son 3, 4, 6 y 9, respectivamente. La suma de dichas sumas es 24.

Definir la función

tal que (sumaSegmentosIniciales xs) es la suma de las sumas de los segmentos iniciales de xs. Por ejemplo,

Comprobar con QuickCheck que la suma de las sumas de los segmentos iniciales de la lista formada por n veces el número uno es el n-ésimo número triangular; es decir que

es igual a

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi con el producto de Wallis

El producto de Wallis es una expresión, descubierta por John Wallis en 1655, para representar el valor de π y que establece que:

Definir las funciones

tales que

  • factoresWallis es la sucesión de los factores del productos de Wallis. Por ejemplo,

  • productosWallis es la sucesión de los productos de los primeros factores de Wallis. Por ejemplo,

  • (aproximacionPi n) es la aproximación de pi obtenida multiplicando los n primeros factores de Wallis. Por ejemplo,

  • (errorPi x) es el menor número de factores de Wallis necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«¿Por qué son hermosos los números? Es como preguntar por qué es bella la Novena Sinfonía de Beethoven. Si no ves por qué, alguien no puede decírtelo. Yo sé que los números son hermosos. Si no son hermosos, nada lo es.»

Paul Erdös.

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El desarrollo de las matemáticas hacia una mayor precisión ha llevado, como es bien sabido, a la formalización de grandes partes de las mismas, de modo que se puede probar cualquier teorema usando nada más que unas pocas reglas mecánicas.»

Kurt Gödel.

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.»

Hermann Weyl.

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Soluciones

Acotación del primorial

El primorial de un número natural n es el producto de todos los números primos menores o iguales a n. Por ejemplo, el primorial de 5 es 30 porque el producto de los primos menores o iguales que 5 es

La propiedad de Erdös de acotación de los primoriales afirma que

Para todo número natural n, su primorial es menor o igual que 4ⁿ.

Definir las funciones

tales que

  • (primorial n) es el primorial de n. Por ejemplo,

  • primoriales es la sucesión de los primoriales. Por ejemplo,

Comprobar con QuickCheck la propiedad de Erdös de acotación de los primoriales.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«Las matemáticas son la reina de las ciencias y la teoría de los números es la reina de las matemáticas.»

Carl Friedrich Gauss.

Transformaciones lineales de números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 8 primeros números triangulares son

Para cada número triangular n existen números naturales a y b, tales que a . n + b también es triangular. Para n = 6, se tiene que

son números triangulares

Definir la función

tal que si n es triangular, (transformaciones n) es la lista de los pares (a,b) tales que a es un entero positivo y b el menor número tal que a . n + b es triangular. Por ejemplo,

Soluciones

Pensamiento

A la hora del rocío,
de la niebla salen
sierra blanca y prado verde.
¡El sol en los encinares!

Antonio Machado

Menor número triangular con más de n divisores

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, el 7º número triangular es

Los primeros 10 números triangulares son

Los divisores de los primeros 7 números triangulares son:

Como se puede observar, 28 es el menor número triangular con más de 5 divisores.

Definir la función

tal que (menorTriangularConAlMenosNDivisores n) es el menor número triangular que tiene al menos n divisores. Por ejemplo,

Nota: Este ejercicio está basado en el problema 12 del Proyecto Euler

Soluciones

Pensamiento

«La Matemática es una ciencia experimental y la computación es el experimento.» ~ Rivin

Números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, los 5 primeros números triangulares son

Definir la función

tal que triangulares es la lista de los números triangulares. Por ejemplo,

Comprobar con QuickCheck que entre dos números triangulares consecutivos siempre hay un número primo.

Soluciones

Pensamiento

Autores, la escena acaba
con un dogma de teatro:
En el principio era la máscara.

Antonio Machado

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Pensamiento

Ni mármol duro y eterno,
ni música ni pintura,
sino palabra en el tiempo.

Antonio Machado

Suma de segmentos iniciales

Los segmentos iniciales de [3,1,2,5] son [3], [3,1], [3,1,2] y [3,1,2,5]. Sus sumas son 3, 4, 6 y 9, respectivamente. La suma de dichas sumas es 24.

Definir la función

tal que (sumaSegmentosIniciales xs) es la suma de las sumas de los segmentos iniciales de xs. Por ejemplo,

Comprobar con QuickCheck que la suma de las sumas de los segmentos iniciales de la lista formada por n veces el número uno es el n-ésimo número triangular; es decir que

es igual a

Soluciones

Pensamiento

Al andar se hace camino,
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.

Antonio Machado

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Soluciones

Pensamiento

Bueno es saber que los vasos
nos sirven para beber;
lo malo es que no sabemos
para que sirve la sed.

Antonio Machado

Mayor prefijo con suma acotada

Definir la función

tal que (mayorPrefijoAcotado xs y) es el mayor prefijo de la lista de los números enteros positivos xs cuya suma es menor o igual que y. Por ejemplo,

Soluciones