Sumas parciales de Juzuk

En 1939 Dov Juzuk extendió el método de Nicómaco del cálculo de los cubos. La extensión se basaba en los siguientes pasos:

  • se comienza con la lista de todos los enteros positivos

  • se agrupan tomando el primer elemento, los dos siguientes, los tres
    siguientes, etc.

  • se seleccionan los elementos en posiciones pares

  • se suman los elementos de cada grupo

  • se calculan las sumas acumuladas

Las sumas obtenidas son las cuantas potencias de los números enteros positivos.

Definir las funciones

tal que

  • (listasParcialesJuzuk xs) es lalista de ls listas parciales de Juzuk; es decir, la selección de los elementos en posiciones pares de la agrupación de los elementos de xs tomando el primer elemento, los dos siguientes, los tres siguientes, etc. Por ejemplo,

  • (sumasParcialesJuzuk xs) es la lista de las sumas acumuladas de los elementos de las listas de Juzuk generadas por xs. Por ejemplo,

Comprobar con QuickChek que, para todo entero positivo n,

  • el elemento de (sumasParcialesJuzuk [1..]) en la posición (n-1) es n^4.
  • el elemento de (sumasParcialesJuzuk [1,3..]) en la posición (n-1) es n^2*(2*n^2 - 1).
  • el elemento de (sumasParcialesJuzuk [1,5..]) en la posición (n-1) es 4*n^4-3*n^2.
  • el elemento de (sumasParcialesJuzuk [2,3..]) en la posición (n-1) es n^2*(n^2+1).

Soluciones

11 Comentarios

    1. Para comprobar las propiedades:

  1. Las comprobaciones serían análogas al primer comentario

Escribe tu solución