Múltiplos repitunos

El ejercicio 4 de la Olimpiada Matemáticas de 1993 es el siguiente:

Demostrar que para todo número primo p distinto de 2 y de 5, existen infinitos múltiplos de p de la forma 1111……1 (escrito sólo con unos).

Definir la función

tal que (multiplosRepitunos p n) es la lista de los múltiplos repitunos de p (es decir, de la forma 1111…1 escrito sólo con unos), donde p es un número primo distinto de 2 y 5. Por ejemplo,

Comprobar con QuickCheck que para todo primo p mayor que 5 y todo número entero positivo n, existe un mútiplo repituno de p mayor que n.

Soluciones

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,

  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

La conjetura de Levy

Hyman Levy observó que

y conjeturó que todos los número impares mayores o iguales que 7 se pueden escribir como la suma de un primo y el doble de un primo. El objetivo de los siguientes ejercicios es comprobar la conjetura de Levy.

Definir las siguientes funciones

tales que

  • (descomposicionesLevy x) es la lista de pares de primos (p,q) tales que x = p + 2q. Por ejemplo,

  • (graficaLevy n) dibuja los puntos (x,y) tales que x pertenece a [7,9..7+2x(n-1)] e y es el número de descomposiciones de Levy de x. Por ejemplo, (graficaLevy 200) dibuja
    La_conjetura_de_Levy-200

Comprobar con QuickCheck la conjetura de Levy.

Soluciones

[schedule on=’2018-03-19′ at=»06:00″]

Cruce de listas

Definir la función

tal que (cruce xs ys) es la lista de las listas obtenidas uniendo las listas de xs sin un elemento con las de ys sin un elemento. Por ejemplo,

Comprobar con QuickCheck que el número de elementos de (cruce xs ys) es el producto de los números de elementos de xs y de ys.

Soluciones

Números que no son cuadrados

Definir las funciones

tales que

  • noCuadrados es la lista de los números naturales que no son cuadrados. Por ejemplo,

  • (graficaNoCuadrados n) dibuja las diferencias entre los n primeros elementos de noCuadrados y sus posiciones. Por ejemplo, (graficaNoCuadrados 300) dibuja
    Numeros_que_no_son_cuadrados_300
    (graficaNoCuadrados 3000) dibuja
    Numeros_que_no_son_cuadrados_3000
    (graficaNoCuadrados 30000) dibuja
    Numeros_que_no_son_cuadrados_30000

Comprobar con QuickCheck que el término de noCuadrados en la posición n-1 es (n + floor(1/2 + sqrt(n))).

Soluciones

Celdas interiores de una retícula

Las celdas de una retícula cuadrada se numeran consecutivamente. Por ejemplo, la numeración de la retícula cuadrada de lado 4 es

Los números de sus celdas interiores son 6,7,10,11.

Definir la función

tal que (interiores n) es la lista de los números de las celdas interiores de la retícula cuadrada de lado n. Por ejemplo,

Comprobar con QuickCheck que el número de celdas interiores de la retícula cuadrada de lado n, con n > 1, es (n-2)^2.

Soluciones

Sucesión de Lichtenberg

La sucesión de Lichtenberg esta formada por la representación decimal de los números binarios de la sucesión de dígitos 0 y 1 alternados Los primeros términos de ambas sucesiones son

Definir las funciones

tales que

  • lichtenberg es la lista cuyos elementos son los términos de la sucesión de Lichtenberg. Por ejemplo,

  • (graficaLichtenberg n) dibuja la gráfica del número de dígitos de los n primeros términos de la sucesión de Lichtenberg. Por ejemlo, (graficaLichtenberg 100) dibuja
    Sucesion_de_Lichtenberg

Comprobar con QuickCheck que todos los términos de la sucesión de Lichtenberg, a partir del 4º, son números compuestos.

Soluciones

Sumas parciales de Juzuk

En 1939 Dov Juzuk extendió el método de Nicómaco del cálculo de los cubos. La extensión se basaba en los siguientes pasos:

  • se comienza con la lista de todos los enteros positivos

  • se agrupan tomando el primer elemento, los dos siguientes, los tres
    siguientes, etc.

  • se seleccionan los elementos en posiciones pares

  • se suman los elementos de cada grupo

  • se calculan las sumas acumuladas

Las sumas obtenidas son las cuantas potencias de los números enteros positivos.

Definir las funciones

tal que

  • (listasParcialesJuzuk xs) es lalista de ls listas parciales de Juzuk; es decir, la selección de los elementos en posiciones pares de la agrupación de los elementos de xs tomando el primer elemento, los dos siguientes, los tres siguientes, etc. Por ejemplo,

  • (sumasParcialesJuzuk xs) es la lista de las sumas acumuladas de los elementos de las listas de Juzuk generadas por xs. Por ejemplo,

Comprobar con QuickChek que, para todo entero positivo n,

  • el elemento de (sumasParcialesJuzuk [1..]) en la posición (n-1) es n^4.
  • el elemento de (sumasParcialesJuzuk [1,3..]) en la posición (n-1) es n^2*(2*n^2 - 1).
  • el elemento de (sumasParcialesJuzuk [1,5..]) en la posición (n-1) es 4*n^4-3*n^2.
  • el elemento de (sumasParcialesJuzuk [2,3..]) en la posición (n-1) es n^2*(n^2+1).

Soluciones

Complemento potencial

Complemento potencial

El complemento potencial de un número entero positivo x es el menor número y tal que el producto de x por y es un una potencia perfecta. Por ejemplo,

  • el complemento potencial de 12 es 3 ya que 12 y 24 no son potencias perfectas pero 36 sí lo es;
  • el complemento potencial de 54 es 4 ya que 54, 108 y 162 no son potencias perfectas pero 216 = 6^3 sí lo es.

Definir las funciones

tales que

  • (complemento x) es el complemento potencial de x; por ejemplo,

  • (graficaComplementoPotencial n) dibuja la gráfica de los complementos potenciales de los n primeros números enteros positivos. Por ejemplo, (graficaComplementoPotencial 100) dibuja
    Complemento_potencial_100
    y (graficaComplementoPotencial 500) dibuja
    Complemento_potencial_500

Comprobar con QuickCheck que (complemento x) es menor o igual que x.

Soluciones

Enumeración de los números enteros

Definir la sucesión

tal que sus elementos son los números enteros comenzando en el 0 e intercalando los positivos y los negativos. Por ejemplo,

Comprobar con QuickCheck que el n-ésimo término de la sucesión es
(1-(2*n+1)*(-1)^n)/4.

Nota. En la comprobación usar

Soluciones

Normalización de expresiones aritméticas

El siguiente tipo de dato representa expresiones construidas con variables, sumas y productos

Por ejemplo, x*(y+z) se representa por (P (V "x") (S (V "y") (V "z")))

Una expresión es un término si es un producto de variables. Por ejemplo, x*(y*z) es un término pero x+(y*z) ni x*(y+z) lo son.

Una expresión está en forma normal si es una suma de términos. Por ejemplo, x*(y*z) y x+(y*z) están en forma normal; pero x*(y+z) y (x+y)*(x+z) no lo están.

Definir la función

tales que

  • (esTermino a) se verifica si a es un término. Por ejemplo,

  • (esNormal a) se verifica si a está en forma normal. Por ejemplo,

  • (normal e) es la forma normal de la expresión e obtenida aplicando, mientras que sea posible, las propiedades distributivas:

Por ejemplo,

Comprobar con QuickCheck que para cualquier expresión e, (normal e) está en forma normal y que (normal (normal e)) es igual a (normal e).

Nota. Para la comprobación se usará el siguiente generador de expresiones aritméticas

Soluciones

Distancias entre primos consecutivos

Los 15 primeros números primos son

Las distancias entre los elementos consecutivos son

La distribución de las distancias es

(es decir, el 1 aparece una vez, el 2 aparece 6 veces, etc.) La frecuencia de las distancias es

(es decir, el 1 aparece el 7.142857%, el 2 el 42.857143% etc.)

Definir las funciones

tales que

  • (cuentaDistancias n) es la distribución de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (frecuenciasDistancias n) es la frecuencia de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (graficas ns) dibuja las gráficas de (frecuenciasDistancias k) para k en ns. Por ejemplo, (graficas [10,20,30]) dibuja
    Distancias_entre_primos_consecutivos1
    (graficas [1000,2000,3000]) dibuja
    Distancias_entre_primos_consecutivos2
    y (graficas [100000,200000,300000]) dibuja
    Distancias_entre_primos_consecutivos3
  • (distanciasMasFrecuentes n) es la lista de las distancias más frecuentes entre los elementos consecutivos de la lista de los n primeros primos. Por ejemplo,

Comprobar con QuickCheck si para todo n > 160 se verifica que (distanciasMasFrecuentes n) es [6].

Soluciones

Particiones de una lista

Definir la función

tal que (particiones xs) es la lista de las particiones de xs en segmentos de elementos consecutivos. Por ejemplo,

Comprobar con QuickCheck que la concatenación de cada uno de los elementos de (particiones xs) es igual a xs.

Nota: En la comprobación usar ejemplos pequeños como se indica a continuación

Soluciones

Sumas de tres capicúas

Definir la función

tales que (sumas3Capicuas x) es la lista de las descomposiciones de x como suma de tres capicúas (con los sumandos no decrecientes). Por ejemplo,

Comprobar con QuickCheck que todo número natural se puede escribir como suma de tres capicúas.

Soluciones

Números de Perrin

Los números de Perrin se definen por la relación de recurrencia

con los valores iniciales

Definir la sucesión

cuyos elementos son los números de Perrin. Por ejemplo,

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

Nota: Aunque QuickCheck no haya encontrado contraejemplos, la propiedad no es cierta. Sólo lo es una de las implicaciones: si n es primo, entonces el n-ésimo término de la sucesión de Perrin es divisible por n. La otra es falsa y los primeros contraejemplos son

Listas duplicadas

Se observa que en la cadena «aabbccddeffgg» todos los caracteres están duplicados excepto el ‘e’. Al añadirlo obtenemos la lista «aabbccddeeffgg» y se dice que esta última está duplicada.

También se observa que «aaaabbbccccdd» no está duplicada (porque hay un número impar de ‘b’ consecutivas). Añadiendo una ‘b’ se obtiene «aaaabbbbccccdd» que está duplicada.

Definir las funciones

tales que

  • (esDuplicada xs) se verifica si xs es una lista duplicada. Por ejemplo,

  • (duplica xs) es la lista obtenida duplicando los elementos de xs que no lo están. Por ejemplo,

Comprobar con QuickCheck que, para cualquier lista de enteros xs, se verifica la siguiente propiedad:

Soluciones

Elementos que respetan la ordenación

Se dice que un elemento x de una lista xs respeta la ordenación si x es mayor o igual que todos lo que tiene delante en xs y es menor o igual que todos lo que tiene detrás en xs. Por ejemplo, en la lista lista [3,2,1,4,6,5,7,9,8] el número 4 respeta la ordenación pero el número 5 no la respeta (porque es mayor que el 6 que está delante).

Definir la función

tal que (respetuosos xs) es la lista de los elementos de xs que respetan la ordenación. Por ejemplo,

Comprobar con QuickCheck que para cualquier lista de enteros xs se verifican las siguientes propiedades:

  • todos los elementos de (sort xs) respetan la ordenación y
  • en la lista (nub (reverse (sort xs))) hay como máximo un elemento que respeta la ordenación.

Soluciones

Sin ceros finales

Definir la función

tal que (sinCerosFinales n) es el número obtenido eliminando los ceros finales de n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier número entero n,

Soluciones

Representación binaria de los números de Carol

Un número de Carol es un número entero de la forma 4^n-2^{n+1}-1 o, equivalentemente, (2^n-1)^2-2. Los primeros números de Carol son -1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527.

Definir las funciones

tales que

  • (carol n) es el n-ésimo número de Carol. Por ejemplo,

  • (carolBinario n) es la representación binaria del n-ésimo número de Carol. Por ejemplo,

Comprobar con QuickCheck que, para n > 2, la representación binaria del n-ésimo número de Carol es el número formado por n-2 veces el dígito 1, seguido por un 0 y a continuación n+1 veces el dígito 1.

Soluciones

Referencias

Números consecutivos compuestos

Una serie compuesta de longitud n es una lista de n números consecutivos que son todos compuestos. Por ejemplo, [8,9,10] y [24,25,26] son dos series compuestas de longitud 3.

Cada serie compuesta se puede representar por el par formado por su primer y último elemento. Por ejemplo, las dos series anteriores se pueden representar pos (8,10) y (24,26) respectivamente.

Definir la función

tal que (menorSerieCompuesta n) es la menor serie compuesta (es decir, la que tiene menores elementos) de longitud 3. Por ejemplo,

Comprobar con QuickCheck que para n > 1, el primer elemento de (menorSerieCompuesta n) es igual al primero de (menorSerieCompuesta (n-1)) o al primero de (menorSerieCompuesta (n+1)).

Soluciones

Referencias

Persistencia multiplicativa de un número

La persistencia multiplicativa de un número es la cantidad de pasos requeridos para reducirlo a una cifra multiplicando sus dígitos. Por ejemplo, la persistencia de 39 es 3 porque 3×9 = 27, 2×7 = 14 y 1×4 = 4.

Definir las funciones

tales que

  • (persistencia x) es la persistencia de x. Por ejemplo,

  • (menorPersistente n) es el menor número con persistencia n. Por ejemplo,

Comprobar con QuickCheck si todos los números menores que 10^233 tienen una persistencia multiplicativa menor o igual que 11.

Nota: Este ejercicio ha sido propuesto por Marcos Giráldez.

Soluciones

Referencias

Número de divisiones en el algoritmo de Euclides

Dados dos números naturales, a y b, es posible calcular su máximo común divisor mediante el Algoritmo de Euclides. Este algoritmo se puede resumir en la siguiente fórmula:

Definir la función

tal que (mcdYdivisiones a b) es el número de divisiones usadas en el cálculo del máximo común divisor de a y b mediante el algoritmo de Euclides. Por ejemplo,

ya que los 4 divisiones del cálculo son

Comprobar con QuickCheck que el número de divisiones requeridas por el algoritmo de Euclides para calcular el MCD de a y b es igual o menor que cinco veces el número de dígitos de menor de los números a y b.

Soluciones

Raíz entera

Definir la función

tal que (raizEnt x n) es la raíz entera n-ésima de x; es decir, el mayor número entero y tal que y^n <= x. Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Soluciones

Soluciones en Maxima

Factorial generalizado

El factorial generalizado de x respecto de y y z es el producto x(x-z)(x-2z) … (x-(y-1)z). Por ejemplo, el factorial generalizado de 7 respecto de 3 y 2 es 7x5x3 = 105 y el de 7 respecto de 2 y 3 es 7×4 = 28

Definir la función

tal que (factGen x y z) es el factorial generalizado de x respecto de y y z. Por ejemplo,

Nota: Se supone que x, y y z son positivos y z < x.

Comprobar con QuickCheck que (factGen x x 1) es el factorial de x.

Soluciones

Solución en Maxima

Representación decimal de números racionales

Los números decimales se representan por ternas, donde el primer elemento es la parte entera, el segundo es el anteperíodo y el tercero es el período. Por ejemplo,

Su tipo es

Los números racionales se representan por un par de enteros, donde el primer elemento es el numerador y el segundo el denominador. Por ejemplo, el número 2/3 se representa por (2,3). Su tipo es

Definir las funciones

tales que

  • (decimal r) es la representación decimal del número racional r. Por ejemplo,

  • (racional d) es el número racional cuya representación decimal es d. Por ejemplo,

Con la función decimal se puede calcular los períodos de los números racionales. Por ejemplo,

Comprobar con QuickCheck si las funciones decimal y racional son inversas.

Soluciones

Números cuyos dígitos coinciden con los de sus factores primos

Un número n es especial si al unir los dígitos de sus factores primos, se obtienen exactamente los dígitos de n, aunque puede ser en otro orden. Por ejemplo, 1255 es especial, pues los factores primos de 1255 son 5 y 251.

Definir la función

tal que (esEspecial n) se verifica si un número n es especial. Por ejemplo,

Comprobar con QuickCheck que todo número primo es especial.

Calcular los 5 primeros números especiales que no son primos.

Soluciones

Menor no expresable como suma

Definir la función

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

Comprobar con QuickCheck que para todo n,

Soluciones

El algoritmo binario del mcd

El máximo común divisor (mcd) de dos números enteros no negativos se puede calcular mediante un algoritmo binario basado en las siguientes propiedades:

  1. Si a,b son pares, entonces mcd(a,b) = 2*mcd(a/2,b/2)
  2. Si a es par y b impar, entonces mcd(a,b) = mcd(a/2,b)
  3. Si a es impar y b par, entonces mcd(a,b) = mcd(a,b/2)
  4. Si a y b son impares y a > b, entonces mcd(a,b) = mcd((a-b)/2,b)
  5. Si a y b son impares y a < b, entonces mcd(a,b) = mcd(a,(b-a)/2)
  6. mcd(a,0) = a
  7. mcd(0,b) = b
  8. mcd(a,a) = a

Por ejemplo, el cálculo del mcd(660,420) es

Definir la función

Definir la función

tal que (mcd a b) es el máximo común divisor de a y b calculado mediante el algoritmo binario del mcd. Por ejemplo,

Comprobar con QuickCheck que, para los enteros no negativos, las funciones mcd y gcd son equivalentes.

Soluciones

Conjunto de funciones

Una función f entre dos conjuntos A e B se puede representar mediante una lista de pares de AxB tales que para cada elemento a de A existe un único elemento b de B tal que (a,b) pertenece a f. Por ejemplo,

  • [(1,2),(3,6)] es una función de [1,3] en [2,4,6];
  • [(1,2)] no es una función de [1,3] en [2,4,6], porque no tiene ningún par cuyo primer elemento sea igual a 3;
  • [(1,2),(3,6),(1,4)] no es una función porque hay dos pares distintos cuya primer elemento es 1.

Definir la función

tal que (funciones xs ys) es el conjunto de las funciones de xs en ys. Por ejemplo,

Comprobar con QuickCheck que si xs es un conjunto con n elementos e ys un conjunto con m elementos, entonces (funciones xs ys) tiene m^n elementos.

Nota. Al hacer la comprobación limitar el tamaño de las pruebas como se indica a continuación

Soluciones

Los números de Armstrong

Un número de n dígitos es un número de Armstrong si es igual a la suma de las n-ésimas potencias de sus dígitos. Por ejemplo, 371, 8208 y 4210818 son números de Armstrong ya que

Definir las funciones

tales que

  • (esArmstrong x) se verifica si x es un número de Armstrong. Por ejemplo,

  • armstrong es la lista cuyos elementos son los números de Armstrong. Por ejemplo,

Comprobar con QuickCheck que los números mayores que
115132219018763992565095597973971522401 no son números de Armstrong.

Soluciones