Menu Close

Etiqueta: Test.QuickCheck

Representación de Zeckendorf

Los primeros números de Fibonacci son

   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

   100 = 89 + 8 + 3

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

   100 = 89 +  8 + 2 + 1
   100 = 55 + 34 + 8 + 3

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

   zeckendorf :: Integer -> [Integer]

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

   zeckendorf 100 == [89,8,3]
   zeckendorf 200 == [144,55,1]
   zeckendorf 300 == [233,55,8,3,1]
   length (zeckendorf (10^50000)) == 66097

Soluciones

module Representacion_de_Zeckendorf where
 
import Data.List (subsequences)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
zeckendorf1 :: Integer -> [Integer]
zeckendorf1 = head . zeckendorf1Aux
 
zeckendorf1Aux :: Integer -> [[Integer]]
zeckendorf1Aux n =
  [xs | xs <- subsequences (reverse (takeWhile (<= n) (tail fibs))),
        sum xs == n,
        sinFibonacciConsecutivos xs]
 
-- fibs es la la sucesión de los números de Fibonacci. Por ejemplo,
--    take 14 fibs  == [1,1,2,3,5,8,13,21,34,55,89,144,233,377]
fibs :: [Integer]
fibs = 1 : scanl (+) 1 fibs
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
 
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
--    sinFibonacciConsecutivos [89, 8, 3]      ==  True
--    sinFibonacciConsecutivos [55, 34, 8, 3]  ==  False
sinFibonacciConsecutivos :: [Integer] -> Bool
sinFibonacciConsecutivos xs =
  and [x /= siguienteFibonacci y | (x,y) <- zip xs (tail xs)]
 
-- (siguienteFibonacci n) es el menor número de Fibonacci mayor que
-- n. Por ejemplo, 
--    siguienteFibonacci 34  ==  55
siguienteFibonacci :: Integer -> Integer
siguienteFibonacci n =
  head (dropWhile (<= n) fibs)
 
-- 2ª solución
-- ===========
 
zeckendorf2 :: Integer -> [Integer]
zeckendorf2 = head . zeckendorf2Aux
 
zeckendorf2Aux :: Integer -> [[Integer]]
zeckendorf2Aux n = map reverse (aux n (tail fibs))
  where aux 0 _ = [[]]
        aux m (x:y:zs)
            | x <= m     = [x:xs | xs <- aux (m-x) zs] ++ aux m (y:zs)
            | otherwise  = []
 
-- 3ª solución
-- ===========
 
zeckendorf3 :: Integer -> [Integer]
zeckendorf3 0 = []
zeckendorf3 n = x : zeckendorf3 (n - x)
  where x = last (takeWhile (<= n) fibs)
 
-- 4ª solución
-- ===========
 
zeckendorf4 :: Integer -> [Integer]
zeckendorf4 n = aux n (reverse (takeWhile (<= n) fibs))
  where aux 0 _      = []
        aux m (x:xs) = x : aux (m-x) (dropWhile (>m-x) xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_zeckendorf :: Positive Integer -> Bool
prop_zeckendorf (Positive n) =
  all (== zeckendorf1 n)
      [zeckendorf2 n,
       zeckendorf3 n,
       zeckendorf4 n]
 
-- La comprobación es
--    λ> quickCheck prop_zeckendorf
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> zeckendorf1 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (1.49 secs, 2,380,707,744 bytes)
--    λ> zeckendorf2 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (0.07 secs, 21,532,008 bytes)
--
--    λ> zeckendorf2 (10^6)
--    [832040,121393,46368,144,55]
--    (1.40 secs, 762,413,432 bytes)
--    λ> zeckendorf3 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 542,488 bytes)
--    λ> zeckendorf4 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 536,424 bytes)
--
--    λ> length (zeckendorf3 (10^3000))
--    3947
--    (3.02 secs, 1,611,966,408 bytes)
--    λ> length (zeckendorf4 (10^2000))
--    2611
--    (0.02 secs, 10,434,336 bytes)
--
--    λ> length (zeckendorf4 (10^50000))
--    66097
--    (2.84 secs, 3,976,483,760 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Ordenada cíclicamente

Se dice que una sucesión x(1), …, x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

   x(i), x(i+1), ..., x(n), x(1), ..., x(i-1)

está ordenada crecientemente de forma estricta.

Definir la función

   ordenadaCiclicamente :: Ord a => [a] -> Maybe Int

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

   ordenadaCiclicamente [1,2,3,4]      ==  Just 0
   ordenadaCiclicamente [5,8,1,3]      ==  Just 2
   ordenadaCiclicamente [4,6,7,5,1,3]  ==  Nothing
   ordenadaCiclicamente [1,0,3,2]      ==  Nothing
   ordenadaCiclicamente [1,2,0]        ==  Just 2
   ordenadaCiclicamente "cdeab"        ==  Just 3

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Soluciones

module Ordenada_ciclicamente where
 
import Test.QuickCheck (Arbitrary, Gen, NonEmptyList (NonEmpty), Property,
                        arbitrary, chooseInt, collect, quickCheck)
import Data.List       (nub, sort)
import Data.Maybe      (isJust, listToMaybe)
 
-- 1ª solución
-- ===========
 
ordenadaCiclicamente1 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente1 xs = aux 0 xs
  where n = length xs
        aux i zs
          | i == n      = Nothing
          | ordenada zs = Just i
          | otherwise   = aux (i+1) (siguienteCiclo zs)
 
-- (ordenada xs) se verifica si la lista xs está ordenada
-- crecientemente. Por ejemplo,
--   ordenada "acd"   ==  True
--   ordenada "acdb"  ==  False
ordenada :: Ord a => [a] -> Bool
ordenada []     = True
ordenada (x:xs) = all (x <) xs && ordenada xs
 
-- (siguienteCiclo xs) es la lista obtenida añadiendo el primer elemento
-- de xs al final del resto de xs. Por ejemplo,
--   siguienteCiclo [3,2,5]  =>  [2,5,3]
siguienteCiclo :: [a] -> [a]
siguienteCiclo []     = []
siguienteCiclo (x:xs) = xs ++ [x]
 
-- 2ª solución
-- ===========
 
ordenadaCiclicamente2 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente2 xs =
  listToMaybe [n | n <- [0..length xs-1],
                   ordenada (drop n xs ++ take n xs)]
 
-- 3ª solución
-- ===========
 
ordenadaCiclicamente3 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente3 xs
  | ordenada (bs ++ as) = Just k
  | otherwise           = Nothing
  where (_,k)   = minimum (zip xs [0..])
        (as,bs) = splitAt k xs
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_ordenadaCiclicamente1 :: NonEmptyList Int -> Bool
prop_ordenadaCiclicamente1 (NonEmpty xs) =
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente1
--    +++ OK, passed 100 tests.
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente2 :: NonEmptyList Int -> Property
prop_ordenadaCiclicamente2 (NonEmpty xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente2
--    +++ OK, passed 100 tests:
--    89% False
--    11% True
 
-- Tipo para generar listas
newtype Lista = L [Int]
  deriving Show
 
-- Generador de listas.
listaArbitraria :: Gen Lista
listaArbitraria = do
  x <- arbitrary
  xs <- arbitrary
  let ys = x : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  return (L (bs ++ as))
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista where
  arbitrary = listaArbitraria
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente3 :: Lista -> Property
prop_ordenadaCiclicamente3 (L xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente3
--    +++ OK, passed 100 tests (100% True).
 
-- Tipo para generar
newtype Lista2 = L2 [Int]
  deriving Show
 
-- Generador de listas
listaArbitraria2 :: Gen Lista2
listaArbitraria2 = do
  x' <- arbitrary
  xs <- arbitrary
  let ys = x' : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  n <- chooseInt (0,1)
  return (if even n
          then L2 (bs ++ as)
          else L2 ys)
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista2 where
  arbitrary = listaArbitraria2
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente4 :: Lista2 -> Property
prop_ordenadaCiclicamente4 (L2 xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente4
--    +++ OK, passed 100 tests:
--    51% True
--    49% False
 
-- La propiedad es
prop_ordenadaCiclicamente :: Lista2 -> Bool
prop_ordenadaCiclicamente (L2 xs) =
  all (== ordenadaCiclicamente1 xs)
      [ordenadaCiclicamente2 xs,
       ordenadaCiclicamente3 xs]
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> ordenadaCiclicamente1 ([100..4000] ++ [1..99])
--    Just 3901
--    (3.27 secs, 2,138,864,568 bytes)
--    λ> ordenadaCiclicamente2 ([100..4000] ++ [1..99])
--    Just 3901
--    (2.44 secs, 1,430,040,008 bytes)
--    λ> ordenadaCiclicamente3 ([100..4000] ++ [1..99])
--    Just 3901
--    (1.18 secs, 515,549,200 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Eliminación de las ocurrencias aisladas.

Definir la función

   eliminaAisladas :: Eq a => a -> [a] -> [a]

tal que (eliminaAisladas x ys) es la lista obtenida eliminando en ys las ocurrencias aisladas de x (es decir, aquellas ocurrencias de x tales que su elemento anterior y posterior son distintos de x). Por ejemplo,

   eliminaAisladas 'X' ""                  == ""
   eliminaAisladas 'X' "X"                 == ""
   eliminaAisladas 'X' "XX"                == "XX"
   eliminaAisladas 'X' "XXX"               == "XXX"
   eliminaAisladas 'X' "abcd"              == "abcd"
   eliminaAisladas 'X' "Xabcd"             == "abcd"
   eliminaAisladas 'X' "XXabcd"            == "XXabcd"
   eliminaAisladas 'X' "XXXabcd"           == "XXXabcd"
   eliminaAisladas 'X' "abcdX"             == "abcd"
   eliminaAisladas 'X' "abcdXX"            == "abcdXX"
   eliminaAisladas 'X' "abcdXXX"           == "abcdXXX"
   eliminaAisladas 'X' "abXcd"             == "abcd"
   eliminaAisladas 'X' "abXXcd"            == "abXXcd"
   eliminaAisladas 'X' "abXXXcd"           == "abXXXcd"
   eliminaAisladas 'X' "XabXcdX"           == "abcd"
   eliminaAisladas 'X' "XXabXXcdXX"        == "XXabXXcdXX"
   eliminaAisladas 'X' "XXXabXXXcdXXX"     == "XXXabXXXcdXXX"
   eliminaAisladas 'X' "XabXXcdXeXXXfXx"   == "abXXcdeXXXfx"

Soluciones

module Elimina_aisladas where
 
import Data.List (group)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
eliminaAisladas1 :: Eq a => a -> [a] -> [a]
eliminaAisladas1 _ [] = []
eliminaAisladas1 x [y]
  | x == y    = []
  | otherwise = [y]
eliminaAisladas1 x (y1:y2:ys)
  | y1 /= x   = y1 : eliminaAisladas1 x (y2:ys)
  | y2 /= x   = y2 : eliminaAisladas1 x ys
  | otherwise = takeWhile (==x) (y1:y2:ys) ++
                eliminaAisladas1 x (dropWhile (==x) ys)
 
-- 2ª solución
-- ===========
 
eliminaAisladas2 :: Eq a => a -> [a] -> [a]
eliminaAisladas2 _ [] = []
eliminaAisladas2 x ys
  | cs == [x] = as ++ eliminaAisladas2 x ds
  | otherwise = as ++ cs ++ eliminaAisladas2 x ds
  where (as,bs) = span (/=x) ys
        (cs,ds) = span (==x) bs
 
-- 3ª solución
-- ===========
 
eliminaAisladas3 :: Eq a => a -> [a] -> [a]
eliminaAisladas3 x ys = concat [zs | zs <- group ys, zs /= [x]]
 
-- 4ª solución
-- ===========
 
eliminaAisladas4 :: Eq a => a -> [a] -> [a]
eliminaAisladas4 x = concat . filter (/= [x]) . group
 
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_eliminaAisladas :: Int -> [Int] -> Bool
prop_eliminaAisladas x ys =
  all (== eliminaAisladas1 x ys)
      [eliminaAisladas2 x ys,
       eliminaAisladas3 x ys,
       eliminaAisladas4 x ys]
 
-- La comprobación es
--    λ> quickCheck prop_eliminaAisladas
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (eliminaAisladas1 'a' (take (5*10^6) (cycle "abca")))
--    4999998
--    (3.86 secs, 2,030,515,400 bytes)
--    λ> length (eliminaAisladas2 'a' (take (5*10^6) (cycle "abca")))
--    4999998
--    (3.41 secs, 2,210,516,832 bytes)
--    λ> length (eliminaAisladas3 'a' (take (5*10^6) (cycle "abca")))
--    4999998
--    (2.11 secs, 2,280,516,448 bytes)
--    λ> length (eliminaAisladas4 'a' (take (5*10^6) (cycle "abca")))
--    4999998
--    (0.92 secs, 1,920,516,704 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Emparejamiento de árboles

Los árboles se pueden representar mediante el siguiente tipo de datos

   data Arbol a = N a [Arbol a]
     deriving (Show, Eq)

Por ejemplo, los árboles

     1               3
    / \             /|\
   6   3           / | \
       |          5  4  7
       5          |     /\
                  6    2  1

se representan por

   ej1, ej2 :: Arbol Int
   ej1 = N 1 [N 6 [],N 3 [N 5 []]]
   ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]

Definir la función

   emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c

tal que (emparejaArboles f a1 a2) es el árbol obtenido aplicando la función f a los elementos de los árboles a1 y a2 que se encuentran en la misma posición. Por ejemplo,

   λ> emparejaArboles (+) (N 1 [N 2 [], N 3[]]) (N 1 [N 6 []])
   N 2 [N 8 []]
   λ> emparejaArboles (+) ej1 ej2
   N 4 [N 11 [],N 7 []]
   λ> emparejaArboles (+) ej1 ej1
   N 2 [N 12 [],N 6 [N 10 []]]

Soluciones

module Emparejamiento_de_arboles where
 
import Data.Tree (Tree (..))
import Control.Monad.Zip (mzipWith)
import Test.QuickCheck (Arbitrary, Gen, arbitrary, sublistOf, sized, quickCheck)
 
data Arbol a = N a [Arbol a]
  deriving (Show, Eq)
 
ej1, ej2 :: Arbol Int
ej1 = N 1 [N 6 [],N 3 [N 5 []]]
ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]
 
-- 1ª solución
-- ===========
 
emparejaArboles1 :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
emparejaArboles1 f (N x xs) (N y ys) =
  N (f x y) (zipWith (emparejaArboles1 f) xs ys)
 
-- 2ª solución
-- ===========
 
emparejaArboles2 :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
emparejaArboles2 f x y =
  treeAarbol (mzipWith f (arbolAtree x) (arbolAtree y))
 
arbolAtree :: Arbol a -> Tree a
arbolAtree (N x xs) = Node x (map arbolAtree xs)
 
treeAarbol :: Tree a -> Arbol a
treeAarbol (Node x xs) = N x (map treeAarbol xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- (arbolArbitrario n) es un árbol aleatorio de orden n. Por ejemplo,
--    λ> generate (arbolArbitrario 5 :: Gen (Arbol Int))
--    N (-26) [N 8 [N 6 [N 11 []]],N 7 []]
--    λ> generate (arbolArbitrario 5 :: Gen (Arbol Int))
--    N 1 []
--    λ> generate (arbolArbitrario 5 :: Gen (Arbol Int))
--    N (-19) [N (-11) [],N 25 [],N 19 [N (-27) [],N (-19) [N 17 []]]]
arbolArbitrario :: Arbitrary a => Int -> Gen (Arbol a)
arbolArbitrario n = do
  x  <- arbitrary
  ms <- sublistOf [0 .. n `div` 2]
  as <- mapM arbolArbitrario ms
  return (N x as)
 
-- Arbol es una subclase de Arbitraria
instance Arbitrary a => Arbitrary (Arbol a) where
  arbitrary = sized arbolArbitrario
 
-- La propiedad es
prop_emparejaArboles :: Arbol Int -> Arbol Int -> Bool
prop_emparejaArboles x y =
  emparejaArboles1 (+) x y == emparejaArboles2 (+) x y &&
  emparejaArboles1 (*) x y == emparejaArboles2 (*) x y
 
-- La comprobación es
--    λ> quickCheck prop_emparejaArboles
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> a500 <- generate (arbolArbitrario 500 :: Gen (Arbol Int))
--    λ> emparejaArboles1 (+) a500 a500 == emparejaArboles1 (+) a500 a500
--    True
--    (1.92 secs, 1,115,813,352 bytes)
--    λ> emparejaArboles2 (+) a500 a500 == emparejaArboles2 (+) a500 a500
--    True
--    (3.28 secs, 2,212,257,928 bytes)
--
--    λ> b500 = arbolAtree a500
--    λ> mzipWith (+) b500 b500 == mzipWith (+) b500 b500
--    True
--    (0.21 secs, 563,503,112 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Separación por posición

Definir la función

   particion :: [a] -> ([a],[a])

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

   particion [3,5,6,2]    ==  ([3,6],[5,2])
   particion [3,5,6,2,7]  ==  ([3,6,7],[5,2])
   particion "particion"  ==  ("priin","atco")

Soluciones

module Separacion_por_posicion where
 
import Data.List (partition)
import qualified Data.Vector as V ((!), fromList, length)
import Test.QuickCheck (quickCheck)
 
-- 1ª solución
-- ===========
 
particion1 :: [a] -> ([a],[a])
particion1 xs = ([x | (n,x) <- nxs, even n],
                 [x | (n,x) <- nxs, odd n])
  where nxs = enumeracion xs
 
--(numeracion xs) es la enumeración de xs. Por ejemplo,
--    enumeracion [7,9,6,8]  ==  [(0,7),(1,9),(2,6),(3,8)]
enumeracion :: [a] -> [(Int,a)]
enumeracion = zip [0..]
 
-- 2ª solución
-- ===========
 
particion2 :: [a] -> ([a],[a])
particion2 []     = ([],[])
particion2 (x:xs) = (x:zs,ys)
  where (ys,zs) = particion2 xs
 
-- 3ª solución
-- ===========
 
particion3 :: [a] -> ([a],[a])
particion3 = foldr f ([],[])
  where f x (ys,zs) = (x:zs,ys)
 
-- 4ª solución
-- ===========
 
particion4 :: [a] -> ([a],[a])
particion4 = foldr (\x (ys,zs) -> (x:zs,ys)) ([],[])
 
-- 5ª solución
-- ===========
 
particion5 :: [a] -> ([a],[a])
particion5 xs =
  ([xs!!k | k <- [0,2..n]],
   [xs!!k | k <- [1,3..n]])
  where n = length xs - 1
 
-- 6ª solución
-- ===========
 
particion6 :: [a] -> ([a],[a])
particion6 xs = (pares xs, impares xs)
 
-- (pares xs) es la lista de los elementos de xs en posiciones
-- pares. Por ejemplo,
--    pares [3,5,6,2]  ==  [3,6]
pares :: [a] -> [a]
pares []     = []
pares (x:xs) = x : impares xs
 
-- (impares xs) es la lista de los elementos de xs en posiciones
-- impares. Por ejemplo,
--    impares [3,5,6,2]  ==  [5,2]
impares :: [a] -> [a]
impares []     = []
impares (_:xs) = pares xs
 
-- 7ª solución
-- ===========
 
particion7 :: [a] -> ([a],[a])
particion7 [] = ([],[])
particion7 xs =
  ([v V.! k | k <- [0,2..n-1]],
   [v V.! k | k <- [1,3..n-1]])
  where v = V.fromList xs
        n = V.length v
 
-- 8ª solución
-- ===========
 
particion8 :: [a] -> ([a],[a])
particion8 xs =
  (map snd ys, map snd zs)
  where (ys,zs) = partition posicionPar (zip [0..] xs)
 
posicionPar :: (Int,a) -> Bool
posicionPar = even . fst
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_particion :: [Int] -> Bool
prop_particion xs =
  all (== particion1 xs)
      [particion2 xs,
       particion3 xs,
       particion4 xs,
       particion5 xs,
       particion6 xs,
       particion7 xs,
       particion8 xs]
 
-- La comprobación es
--    λ> quickCheck prop_particion
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (snd (particion1 [1..6*10^6]))
--    6000000
--    (2.74 secs, 2,184,516,080 bytes)
--    λ> last (snd (particion2 [1..6*10^6]))
--    6000000
--    (2.02 secs, 1,992,515,880 bytes)
--    λ> last (snd (particion3 [1..6*10^6]))
--    6000000
--    (3.17 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion4 [1..6*10^6]))
--    6000000
--    (3.23 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.62 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.33 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion6 [1..6*10^6]))
--    6000000
--    (1.80 secs, 888,515,960 bytes)
--    λ> last (snd (particion7 [1..6*10^6]))
--    6000000
--    (1.29 secs, 1,166,865,672 bytes)
--    λ> last (snd (particion8 [1..6*10^6]))
--    6000000
--    (0.87 secs, 3,384,516,616 bytes)
--
--    λ> last (snd (particion5 [1..10^7]))
--    10000000
--    (1.94 secs, 1,720,516,872 bytes)
--    λ> last (snd (particion7 [1..10^7]))
--    10000000
--    (2.54 secs, 1,989,215,176 bytes)
--    λ> last (snd (particion8 [1..10^7]))
--    10000000
--    (1.33 secs, 5,640,516,960 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>