Menu Close

Etiqueta: QuickCheck

Números de Perrin

Los números de Perrin se definen por la elación de recurrencia

   P(n) = P(n - 2) + P(n - 3) si n > 2,

con los valores iniciales

   P(0) = 3, P(1) = 0 y P(2) = 2.

Definir la sucesión

   sucPerrin :: [Integer]

cuyos elementos son los números de Perrin. Por ejemplo,

   λ> take 15 sucPerrin
   [3,0,2,3,2,5,5,7,10,12,17,22,29,39,51]
   λ> length (show (sucPerrin !! (2*10^5)))
   24425

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

import Data.List (genericIndex, unfoldr)
import Data.Numbers.Primes (isPrime)
import Test.QuickCheck
 
-- 1ª solución
sucPerrin1 :: [Integer]
sucPerrin1 = 3 : 0 : 2 : zipWith (+) sucPerrin1 (tail sucPerrin1)
 
-- 2ª solución
sucPerrin2 :: [Integer]
sucPerrin2 = [x | (x,_,_) <- iterate op (3,0,2)]
  where op (a,b,c) = (b,c,a+b)
 
-- 3ª solución
sucPerrin3 :: [Integer]
sucPerrin3 =
  unfoldr (\(a, (b,c)) -> Just (a, (b,(c,a+b)))) (3,(0,2))
 
-- 4ª solución
sucPerrin4 :: [Integer]
sucPerrin4 = [vectorPerrin n ! n | n <- [0..]]
 
vectorPerrin :: Integer -> Array Integer Integer
vectorPerrin n = v where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 3
  f 1 = 0
  f 2 = 2
  f i = v ! (i-2) + v ! (i-3)
 
-- Comparación de eficiencia
--    λ> length (show (sucPerrin1 !! (3*10^5)))
--    36638
--    (1.62 secs, 2,366,238,984 bytes)
--    λ> length (show (sucPerrin2 !! (3*10^5)))
--    36638
--    (1.40 secs, 2,428,701,384 bytes)
--    λ> length (show (sucPerrin3 !! (3*10^5)))
--    36638
--    (1.14 secs, 2,409,504,864 bytes)
--    λ> length (show (sucPerrin4 !! (3*10^5)))
--    36638
--    (1.78 secs, 2,585,400,776 bytes)
 
 
-- Usaremos la 3ª
sucPerrin :: [Integer]
sucPerrin = sucPerrin3
 
-- La propiedad es  
conjeturaPerrin :: Integer -> Property
conjeturaPerrin n =
  n > 1 ==>
  (perrin n `mod` n == 0) == isPrime n
 
-- (perrin n) es el n-ésimo término de la sucesión de Perrin. Por
-- ejemplo,
--    perrin 4  ==  2
--    perrin 5  ==  5
--    perrin 6  ==  5
perrin :: Integer -> Integer
perrin n = sucPerrin `genericIndex` n
 
-- La comprobación es
--    λ> quickCheck conjeturaPerrin
--    +++ OK, passed 100 tests.
 
-- Nota: Aunque QuickCheck no haya encontrado contraejemplos, la
-- propiedad no es cierta. Sólo lo es una de las implicaciones: si n es
-- primo, entonces el  n-ésimo término de la sucesión de Perrin es
-- divisible por n. La otra es falsa y los primeros contraejemplos son
--    271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291

Suma de segmentos iniciales

Los segmentos iniciales de [3,1,2,5] son [3], [3,1], [3,1,2] y [3,1,2,5]. Sus sumas son 3, 4, 6 y 9, respectivamente. La suma de dichas sumas es 24.

Definir la función

   sumaSegmentosIniciales :: [Integer] -> Integer

tal que (sumaSegmentosIniciales xs) es la suma de las sumas de los segmentos iniciales de xs. Por ejemplo,

   sumaSegmentosIniciales [3,1,2,5]     ==  24
   sumaSegmentosIniciales [1..3*10^6]  ==  4500004500001000000

Comprobar con QuickCheck que la suma de las sumas de los segmentos iniciales de la lista formada por n veces el número uno es el n-ésimo número triangular; es decir que

   sumaSegmentosIniciales (genericReplicate n 1)

es igual a

   n * (n + 1) `div` 2

Soluciones

import Data.List (genericLength, genericReplicate)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
sumaSegmentosIniciales :: [Integer] -> Integer
sumaSegmentosIniciales xs =
  sum [sum (take k xs) | k <- [1.. length xs]]
 
-- 2ª solución
-- ===========
 
sumaSegmentosIniciales2 :: [Integer] -> Integer
sumaSegmentosIniciales2 xs =
  sum (zipWith (*) [n,n-1..1] xs)
  where n = genericLength xs
 
-- 3ª solución
-- ===========
 
sumaSegmentosIniciales3 :: [Integer] -> Integer
sumaSegmentosIniciales3 xs =
  sum (scanl1 (+) xs)
 
-- Comprobación de la equivalencia
-- ===============================
 
-- La propiedad es
prop_sumaSegmentosInicialesEquiv :: [Integer] -> Bool
prop_sumaSegmentosInicialesEquiv xs =
  all (== sumaSegmentosIniciales xs) [f xs | f <- [ sumaSegmentosIniciales2
                                                  , sumaSegmentosIniciales3]]
 
-- La comprobación es
--   λ> quickCheck prop_sumaSegmentosInicialesEquiv
--   +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
--   λ> sumaSegmentosIniciales [1..10^4]
--   166716670000
--   (2.42 secs, 7,377,926,824 bytes)
--   λ> sumaSegmentosIniciales2 [1..10^4]
--   166716670000
--   (0.01 secs, 4,855,176 bytes)
--   
--   λ> sumaSegmentosIniciales2 [1..3*10^6]
--   4500004500001000000
--   (2.68 secs, 1,424,404,168 bytes)
--   λ> sumaSegmentosIniciales3 [1..3*10^6]
--   4500004500001000000
--   (1.54 secs, 943,500,384 bytes)
 
-- Comprobación de la propiedad
-- ============================
 
-- La propiedad es
prop_sumaSegmentosIniciales :: Positive Integer -> Bool
prop_sumaSegmentosIniciales (Positive n) =
  sumaSegmentosIniciales3 (genericReplicate n 1) ==
  n * (n + 1) `div` 2
 
-- La compronación es
--   λ> quickCheck prop_sumaSegmentosIniciales
--   +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Menor no expresable como suma

Definir la función

   menorNoSuma :: [Integer] -> Integer

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

   menorNoSuma [6,1,2]    ==  4
   menorNoSuma [1,2,3,9]  ==  7
   menorNoSuma [5]        ==  1
   menorNoSuma [1..20]    ==  211
   menorNoSuma [1..10^6]  ==  500000500001

Comprobar con QuickCheck que para todo n,

   menorNoSuma [1..n] == 1 + sum [1..n]

Soluciones

-- 1ª definición
-- =============
 
import Data.List (sort, subsequences)
import Test.QuickCheck
 
menorNoSuma1 :: [Integer] -> Integer
menorNoSuma1 xs =
  head [n | n <- [1..], n `notElem` sumas xs]
 
-- (sumas xs) es la lista de las sumas de los subconjuntos de xs. Por ejemplo,
--    sumas [1,2,6]  ==  [0,1,2,3,6,7,8,9]
--    sumas [6,1,2]  ==  [0,6,1,7,2,8,3,9]
sumas :: [Integer] -> [Integer]
sumas xs = map sum (subsequences xs)
 
-- 2ª definición
-- =============
 
menorNoSuma2 :: [Integer] -> Integer
menorNoSuma2  = menorNoSumaOrd . reverse . sort 
 
-- (menorNoSumaOrd xs) es el menor número que no se puede escribir como
-- suma de un subconjunto de xs, donde xs es una lista de números
-- naturales ordenada de mayor a menor. Por ejemplo,
--    menorNoSumaOrd [6,2,1]  ==  4
menorNoSumaOrd [] = 1
menorNoSumaOrd (x:xs) | x > y     = y
                      | otherwise = y+x
  where y = menorNoSumaOrd xs
 
-- Comparación de eficiencia
-- =========================
 
--    λ> menorNoSuma1 [1..20]
--    211
--    (20.40 secs, 28,268,746,320 bytes)
--    λ> menorNoSuma2 [1..20]
--    211
--    (0.01 secs, 0 bytes)
 
-- Propiedad
-- =========
 
-- La propiedad es
prop_menorNoSuma :: (Positive Integer) -> Bool
prop_menorNoSuma (Positive n) =
  menorNoSuma2 [1..n] == 1 + sum [1..n]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=7}) prop_menorNoSuma
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

   indiceGoldbach  :: Int -> Int
   graficaGoldbach :: Int -> IO ()

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,
     indiceGoldbach 2                        ==  1
     indiceGoldbach 4                        ==  2
     indiceGoldbach 27                       ==  3
     sum (map indiceGoldbach [2..5000])      ==  10619
     maximum (map indiceGoldbach [2..5000])  ==  3
  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

import Data.Array
import Data.Numbers.Primes
import Graphics.Gnuplot.Simple
import Test.QuickCheck
 
 
-- 1ª definición
-- =============
 
indiceGoldbach :: Int -> Int
indiceGoldbach n =
  minimum (map length (particiones n))
 
particiones :: Int -> [[Int]]
particiones n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
    where f 0 = [[]]
          f m = [x:y | x <- xs, 
                       y <- v ! (m-x), 
                       [x] >= take 1 y]
            where xs = reverse (takeWhile (<= m) primes)
 
-- 2ª definición
-- =============
 
indiceGoldbach2 :: Int -> Int
indiceGoldbach2 x =
  head [n | n <- [1..], esSumaDe x n]
 
-- (esSumaDe x n) se verifica si x se puede escribir como la suma de n
-- primos. Por ejemplo,
--    esSumaDe 2  1  ==  True
--    esSumaDe 4  1  ==  False
--    esSumaDe 4  2  ==  True
--    esSumaDe 27 2  ==  False
--    esSumaDe 27 3  ==  True
esSumaDe :: Int -> Int -> Bool
esSumaDe x 1 = isPrime x
esSumaDe x n = or [esSumaDe (x-p) (n-1) | p <- takeWhile (<= x) primes]
 
-- 3ª definición
-- =============
 
indiceGoldbach3 :: Int -> Int
indiceGoldbach3 x =
  head [n | n <- [1..], esSumaDe3 x n]
 
esSumaDe3 :: Int -> Int -> Bool
esSumaDe3 x n = a ! (x,n) where
  a = array ((2,1),(x,9)) [((i,j),f i j) | i <- [2..x], j <- [1..9]]
  f i 1 = isPrime i
  f i j = or [a!(i-k,j-1) | k <- takeWhile (<= i) primes]
 
-- 4ª definición
-- =============
 
indiceGoldbach4 :: Int -> Int
indiceGoldbach4 n = v ! n where
  v = array (2,n) [(i,f i) | i <- [2..n]]
  f i | isPrime i = 1
      | otherwise = 1 + minimum [v!(i-p) | p <- takeWhile (< (i-1)) primes]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> sum (map indiceGoldbach [2..80])
--    142
--    (2.66 secs, 1,194,330,496 bytes)
--    λ> sum (map indiceGoldbach2 [2..80])
--    142
--    (0.01 secs, 1,689,944 bytes)
--    λ> sum (map indiceGoldbach3 [2..80])
--    142
--    (0.03 secs, 27,319,296 bytes)
--    λ> sum (map indiceGoldbach4 [2..80])
--    142
--    (0.03 secs, 47,823,656 bytes)
--    
--    λ> sum (map indiceGoldbach2 [2..1000])
--    2030
--    (0.10 secs, 200,140,264 bytes)
--    λ> sum (map indiceGoldbach3 [2..1000])
--    2030
--    (3.10 secs, 4,687,467,664 bytes)
 
-- Gráfica
-- =======
 
graficaGoldbach :: Int -> IO ()
graficaGoldbach n =
  plotList [ Key Nothing
           , XRange (2,fromIntegral n)
           , PNG ("Conjetura_de_Goldbach_" ++ show n ++ ".png")
           ]
           [indiceGoldbach2 k | k <- [2..n]]
 
-- Comprobación de la conjetura de Goldbach
-- ========================================
 
-- La propiedad es
prop_Goldbach :: Int -> Property
prop_Goldbach x =
  x >= 2 ==> indiceGoldbach2 x < 4
 
-- La comprobación es
--    λ> quickCheck prop_Goldbach
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“La diferencia entre los matemáticos y los físicos es que después de que los físicos prueban un gran resultado piensan que es fantástico, pero después de que los matemáticos prueban un gran resultado piensan que es trivial.”

Lucien Szpiro.

La conjetura de Levy

Hyman Levy observó que

    7 = 3 + 2 x 2
    9 = 3 + 2 x 3 =  5 + 2 x 2
   11 = 5 + 2 x 3 =  7 + 2 x 2
   13 = 3 + 2 x 5 =  7 + 2 x 3
   15 = 3 + 2 x 5 = 11 + 2 x 2
   17 = 3 + 2 x 7 =  7 + 2 x 5 = 11 + 2 x 3 = 13 + 2 x 2
   19 = 5 + 2 x 7 = 13 + 2 x 3

y conjeturó que todos los número impares mayores o iguales que 7 se pueden escribir como la suma de un primo y el doble de un primo. El objetivo de los siguientes ejercicios es comprobar la conjetura de Levy.

Definir las siguientes funciones

   descomposicionesLevy :: Integer -> [(Integer,Integer)]
   graficaLevy          :: Integer -> IO ()

tales que

  • (descomposicionesLevy x) es la lista de pares de primos (p,q) tales que x = p + 2q. Por ejemplo,
     descomposicionesLevy  7  ==  [(3,2)]
     descomposicionesLevy  9  ==  [(3,3),(5,2)]
     descomposicionesLevy 17  ==  [(3,7),(7,5),(11,3),(13,2)]
  • (graficaLevy n) dibuja los puntos (x,y) tales que x pertenece a [7,9..7+2x(n-1)] e y es el número de descomposiciones de Levy de x. Por ejemplo, (graficaLevy 200) dibuja
    La_conjetura_de_Levy-200

Comprobar con QuickCheck la conjetura de Levy.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
descomposicionesLevy :: Integer -> [(Integer,Integer)]
descomposicionesLevy x =
  [(p,q) | p <- takeWhile (< x) (tail primes)
         , let q = (x - p) `div` 2
         , isPrime q]
 
graficaLevy :: Integer -> IO ()
graficaLevy n =
  plotList [ Key Nothing
           , XRange (7,fromIntegral (7+2*(n-1)))
           , PNG ("La_conjetura_de_Levy-" ++ show n ++ ".png")
           ]
           [(x, length (descomposicionesLevy x)) | x <- [7,9..7+2*(n-1)]] 
 
-- La propiedad es
prop_Levy :: Integer -> Bool
prop_Levy x =
  not (null (descomposicionesLevy (7 + 2 * abs x)))
 
-- La comprobación es
--    λ> quickCheck prop_Levy
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Dios creó el número natural, y todo el resto es obra del hombre.”

Leopold Kronecker