Menu Close

Etiqueta: primes

Conjunto de primos relativos

Dos números enteros positivos son primos relativos si no tienen ningún factor primo en común; es decit, si 1 es su único divisor común. Por ejemplo, 6 y 35 son primos entre sí, pero 6 y 27 no lo son porque ambos son divisibles por 3.

Definir la función

   primosRelativos :: [Int] -> Bool

tal que (primosRelativos xs) se verifica si los elementos de xs son primos relativos dos a dos. Por ejemplo,

   primosRelativos [6,35]         ==  True
   primosRelativos [6,27]         ==  False
   primosRelativos [2,3,4]        ==  False
   primosRelativos [6,35,11]      ==  True
   primosRelativos [6,35,11,221]  ==  True
   primosRelativos [6,35,11,231]  ==  False

Soluciones

import Test.QuickCheck
import Data.List (delete, intersect)
import Data.Numbers.Primes (primeFactors, primes)
import qualified Data.Set as S (disjoint, fromList)
 
-- 1ª solución
-- ===========
 
primosRelativos1 :: [Int] -> Bool
primosRelativos1 []     = True
primosRelativos1 (x:xs) =
  and [sonPrimosRelativos1 x y | y <- xs] && primosRelativos1 xs
 
-- (sonPrimosRelativos x y) se verifica si x e y son primos
-- relativos. Por ejemplo,
--    sonPrimosRelativos1 6 35  ==  True
--    sonPrimosRelativos1 6 27  ==  False
sonPrimosRelativos1 :: Int -> Int -> Bool
sonPrimosRelativos1 x y =
  null (divisoresPrimos x `intersect` divisoresPrimos y)
 
-- (divisoresPrimos x) es la lista de los divisores primos de x. Por
-- ejemplo,
--    divisoresPrimos 600  ==  [2,2,2,3,5,5]
divisoresPrimos :: Int -> [Int]
divisoresPrimos 1 = []
divisoresPrimos x =
  y : divisoresPrimos (x `div` y)
  where y = menorDivisorPrimo x
 
-- (menorDivisorPrimo x) es el menor divisor primo de x. Por ejemplo,
--    menorDivisorPrimo 15  ==  3
--    menorDivisorPrimo 11  ==  11
menorDivisorPrimo :: Int -> Int
menorDivisorPrimo x =
  head [y | y <- [2..], x `mod` y == 0]
 
-- 2ª solución
-- ===========
 
primosRelativos2 :: [Int] -> Bool
primosRelativos2 []     = True
primosRelativos2 (x:xs) =
  all (sonPrimosRelativos1 x) xs && primosRelativos2 xs
 
-- 3ª solución
-- ===========
 
primosRelativos3 :: [Int] -> Bool
primosRelativos3 []     = True
primosRelativos3 (x:xs) =
  all (sonPrimosRelativos2 x) xs && primosRelativos3 xs
 
sonPrimosRelativos2 :: Int -> Int -> Bool
sonPrimosRelativos2 x y =
  null (primeFactors x `intersect` primeFactors y)
 
-- 4ª solución
-- ===========
 
primosRelativos4 :: [Int] -> Bool
primosRelativos4 []     = True
primosRelativos4 (x:xs) =
  all (sonPrimosRelativos3 x) xs && primosRelativos4 xs
 
sonPrimosRelativos3 :: Int -> Int -> Bool
sonPrimosRelativos3 x y =
  S.fromList (primeFactors x) `S.disjoint` S.fromList (primeFactors y)
 
-- 5ª solución
-- ===========
 
primosRelativos5 :: [Int] -> Bool
primosRelativos5 []     = True
primosRelativos5 (x:xs) =
  all (sonPrimosRelativos5 x) xs && primosRelativos5 xs
 
sonPrimosRelativos5 :: Int -> Int -> Bool
sonPrimosRelativos5 x y =
  gcd x y == 1
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_primosRelativos :: [Positive Int] -> Bool
prop_primosRelativos xs =
  all (== primosRelativos1 ys)
      [primosRelativos2 ys,
       primosRelativos3 ys,
       primosRelativos4 ys,
       primosRelativos5 ys]
  where ys = getPositive <$> xs
 
-- La comprobación es
--    λ> quickCheck prop_primosRelativos
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> primosRelativos1 (take 120 primes)
--    True
--    (1.92 secs, 869,909,416 bytes)
--    λ> primosRelativos2 (take 120 primes)
--    True
--    (1.99 secs, 869,045,656 bytes)
--    λ> primosRelativos3 (take 120 primes)
--    True
--    (0.09 secs, 221,183,200 bytes)
--
--    λ> primosRelativos3 (take 600 primes)
--    True
--    (2.62 secs, 11,196,690,856 bytes)
--    λ> primosRelativos4 (take 600 primes)
--    True
--    (2.66 secs, 11,190,940,456 bytes)
--    λ> primosRelativos5 (take 600 primes)
--    True
--    (0.14 secs, 123,673,648 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

   emparejables :: Integer -> Integer -> [[Integer]]

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

   take 5 (emparejables 2   10)  ==  [[3,7]]
   take 5 (emparejables 3   10)  ==  []
   take 5 (emparejables 2  100)  ==  [[3,7],[3,11],[3,17],[3,31],[3,37]]
   take 5 (emparejables 3  100)  ==  [[3,37,67],[7,19,97]]
   take 5 (emparejables 4  100)  ==  []
   take 5 (emparejables 4 1000)  ==  [[3,7,109,673],[23,311,677,827]]

Variación de la conjetura de Goldbach

La conjetura de Goldbach afirma que

Todo número entero mayor que 5 se puede escribir como suma de tres números primos.

En este ejercicio consideraremos la variación consistente en exigir que los tres sumandos sean distintos.

Definir las funciones

   sumas3PrimosDistintos      :: Int -> [(Int,Int,Int)]
   conKsumas3PrimosDistintos  :: Int -> Int -> [Int]
   noSonSumas3PrimosDistintos :: Int -> [Int]

tales que

  • (sumas3PrimosDistintos n) es la lista de las descomposiciones decrecientes de n como tres primos distintos. Por ejemplo,
   sumas3PrimosDistintos 26  ==  [(13,11,2),(17,7,2),(19,5,2)]
   sumas3PrimosDistintos 18  ==  [(11,5,2),(13,3,2)]
   sumas3PrimosDistintos 10  ==  [(5,3,2)]
   sumas3PrimosDistintos 11  ==  []
  • (conKsumas3PrimosDistintos k n) es la lista de los números menores o iguales que n que se pueden escribir en k forma distintas como suma de tres primos distintos. Por ejemplo,
   conKsumas3PrimosDistintos 3 99  ==  [26,27,29,32,36,42,46,48,54,58,60]
   conKsumas3PrimosDistintos 2 99  ==  [18,20,21,22,23,24,25,28,30,34,64,70]
   conKsumas3PrimosDistintos 1 99  ==  [10,12,14,15,16,19,40]
   conKsumas3PrimosDistintos 0 99  ==  [11,13,17]
  • (noSonSumas3PrimosDistintos n) es la lista de los números menores o iguales que n que no se pueden escribir como suma de tres primos distintos. Por ejemplo,
   noSonSumas3PrimosDistintos 99   ==  [11,13,17]
   noSonSumas3PrimosDistintos 500  ==  [11,13,17]

Soluciones

Pensamiento

import Data.Numbers.Primes
 
sumas3PrimosDistintos :: Int -> [(Int,Int,Int)]
sumas3PrimosDistintos n =
  [(a,b,c) | a <- takeWhile (<=n-5) primes
           , b <- takeWhile (<a) primes
           , let c = n - a - b
           , c < b
           , isPrime c]
 
conKsumas3PrimosDistintos :: Int -> Int -> [Int]
conKsumas3PrimosDistintos k n =
  [x | x <- [1..n]
     , length (sumas3PrimosDistintos x) == k]
 
noSonSumas3PrimosDistintos :: Int -> [Int]
noSonSumas3PrimosDistintos = conKsumas3PrimosDistintos 0

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

«Cualquier tonto puede escribir un código que un ordenador puede entender. Los buenos programadores escriben código que los humanos pueden entender.»

Martin Fowler.

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

   indiceGoldbach  :: Int -> Int
   graficaGoldbach :: Int -> IO ()

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,
     indiceGoldbach 2                        ==  1
     indiceGoldbach 4                        ==  2
     indiceGoldbach 27                       ==  3
     sum (map indiceGoldbach [2..5000])      ==  10619
     maximum (map indiceGoldbach [2..5000])  ==  3
  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

import Data.Array
import Data.Numbers.Primes
import Graphics.Gnuplot.Simple
import Test.QuickCheck
 
 
-- 1ª definición
-- =============
 
indiceGoldbach :: Int -> Int
indiceGoldbach n =
  minimum (map length (particiones n))
 
particiones :: Int -> [[Int]]
particiones n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
    where f 0 = [[]]
          f m = [x:y | x <- xs, 
                       y <- v ! (m-x), 
                       [x] >= take 1 y]
            where xs = reverse (takeWhile (<= m) primes)
 
-- 2ª definición
-- =============
 
indiceGoldbach2 :: Int -> Int
indiceGoldbach2 x =
  head [n | n <- [1..], esSumaDe x n]
 
-- (esSumaDe x n) se verifica si x se puede escribir como la suma de n
-- primos. Por ejemplo,
--    esSumaDe 2  1  ==  True
--    esSumaDe 4  1  ==  False
--    esSumaDe 4  2  ==  True
--    esSumaDe 27 2  ==  False
--    esSumaDe 27 3  ==  True
esSumaDe :: Int -> Int -> Bool
esSumaDe x 1 = isPrime x
esSumaDe x n = or [esSumaDe (x-p) (n-1) | p <- takeWhile (<= x) primes]
 
-- 3ª definición
-- =============
 
indiceGoldbach3 :: Int -> Int
indiceGoldbach3 x =
  head [n | n <- [1..], esSumaDe3 x n]
 
esSumaDe3 :: Int -> Int -> Bool
esSumaDe3 x n = a ! (x,n) where
  a = array ((2,1),(x,9)) [((i,j),f i j) | i <- [2..x], j <- [1..9]]
  f i 1 = isPrime i
  f i j = or [a!(i-k,j-1) | k <- takeWhile (<= i) primes]
 
-- 4ª definición
-- =============
 
indiceGoldbach4 :: Int -> Int
indiceGoldbach4 n = v ! n where
  v = array (2,n) [(i,f i) | i <- [2..n]]
  f i | isPrime i = 1
      | otherwise = 1 + minimum [v!(i-p) | p <- takeWhile (< (i-1)) primes]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> sum (map indiceGoldbach [2..80])
--    142
--    (2.66 secs, 1,194,330,496 bytes)
--    λ> sum (map indiceGoldbach2 [2..80])
--    142
--    (0.01 secs, 1,689,944 bytes)
--    λ> sum (map indiceGoldbach3 [2..80])
--    142
--    (0.03 secs, 27,319,296 bytes)
--    λ> sum (map indiceGoldbach4 [2..80])
--    142
--    (0.03 secs, 47,823,656 bytes)
--    
--    λ> sum (map indiceGoldbach2 [2..1000])
--    2030
--    (0.10 secs, 200,140,264 bytes)
--    λ> sum (map indiceGoldbach3 [2..1000])
--    2030
--    (3.10 secs, 4,687,467,664 bytes)
 
-- Gráfica
-- =======
 
graficaGoldbach :: Int -> IO ()
graficaGoldbach n =
  plotList [ Key Nothing
           , XRange (2,fromIntegral n)
           , PNG ("Conjetura_de_Goldbach_" ++ show n ++ ".png")
           ]
           [indiceGoldbach2 k | k <- [2..n]]
 
-- Comprobación de la conjetura de Goldbach
-- ========================================
 
-- La propiedad es
prop_Goldbach :: Int -> Property
prop_Goldbach x =
  x >= 2 ==> indiceGoldbach2 x < 4
 
-- La comprobación es
--    λ> quickCheck prop_Goldbach
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La diferencia entre los matemáticos y los físicos es que después de que los físicos prueban un gran resultado piensan que es fantástico, pero después de que los matemáticos prueban un gran resultado piensan que es trivial.»

Lucien Szpiro.

La conjetura de Levy

Hyman Levy observó que

    7 = 3 + 2 x 2
    9 = 3 + 2 x 3 =  5 + 2 x 2
   11 = 5 + 2 x 3 =  7 + 2 x 2
   13 = 3 + 2 x 5 =  7 + 2 x 3
   15 = 3 + 2 x 5 = 11 + 2 x 2
   17 = 3 + 2 x 7 =  7 + 2 x 5 = 11 + 2 x 3 = 13 + 2 x 2
   19 = 5 + 2 x 7 = 13 + 2 x 3

y conjeturó que todos los número impares mayores o iguales que 7 se pueden escribir como la suma de un primo y el doble de un primo. El objetivo de los siguientes ejercicios es comprobar la conjetura de Levy.

Definir las siguientes funciones

   descomposicionesLevy :: Integer -> [(Integer,Integer)]
   graficaLevy          :: Integer -> IO ()

tales que

  • (descomposicionesLevy x) es la lista de pares de primos (p,q) tales que x = p + 2q. Por ejemplo,
     descomposicionesLevy  7  ==  [(3,2)]
     descomposicionesLevy  9  ==  [(3,3),(5,2)]
     descomposicionesLevy 17  ==  [(3,7),(7,5),(11,3),(13,2)]
  • (graficaLevy n) dibuja los puntos (x,y) tales que x pertenece a [7,9..7+2x(n-1)] e y es el número de descomposiciones de Levy de x. Por ejemplo, (graficaLevy 200) dibuja
    La_conjetura_de_Levy-200

Comprobar con QuickCheck la conjetura de Levy.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
descomposicionesLevy :: Integer -> [(Integer,Integer)]
descomposicionesLevy x =
  [(p,q) | p <- takeWhile (< x) (tail primes)
         , let q = (x - p) `div` 2
         , isPrime q]
 
graficaLevy :: Integer -> IO ()
graficaLevy n =
  plotList [ Key Nothing
           , XRange (7,fromIntegral (7+2*(n-1)))
           , PNG ("La_conjetura_de_Levy-" ++ show n ++ ".png")
           ]
           [(x, length (descomposicionesLevy x)) | x <- [7,9..7+2*(n-1)]] 
 
-- La propiedad es
prop_Levy :: Integer -> Bool
prop_Levy x =
  not (null (descomposicionesLevy (7 + 2 * abs x)))
 
-- La comprobación es
--    λ> quickCheck prop_Levy
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Dios creó el número natural, y todo el resto es obra del hombre.»

Leopold Kronecker