Menu Close

Día: 2 diciembre, 2022

El tipo de las fórmulas proposicionales: Interpretaciones de una fórmula

El tipo de las fórmulas proposicionales se puede definir por

   data FProp = Const Bool
              | Var Char
              | Neg FProp
              | Conj FProp FProp
              | Impl FProp FProp
     deriving Show

de modo que la fórmula A → ⊥ ∧ ¬B se representa por

   Impl (Var 'A') (Conj (Const False) (Neg (Var 'B')))

Una interpretación de una fórmula es una función de sus variables en los booleanos. Por ejemplo, la interpretación que a la variable A le asigna verdadero y a la B falso se puede representar por

   [('A', True), ('B', False)]

El tipo de las intepretaciones de puede definir por

   type Interpretacion = [(Char, Bool)]

Definir la función

   interpretaciones :: FProp -> [Interpretacion]

tal que interpretaciones p es la lista de las interpretaciones de la fórmula p. Por ejemplo,

   λ> interpretaciones (Impl (Var 'A') (Conj (Var 'A') (Var 'B')))
   [[('A',False),('B',False)],
    [('A',False),('B',True)],
    [('A',True),('B',False)],
    [('A',True),('B',True)]]

Soluciones

A continuación se muestran las soluciones en Haskell y las soluciones en Python.


Soluciones en Haskell

import Data.List (nub)
 
data FProp = Const Bool
           | Var Char
           | Neg FProp
           | Conj FProp FProp
           | Impl FProp FProp
  deriving Show
 
type Interpretacion = [(Char, Bool)]
 
interpretaciones :: FProp -> [Interpretacion]
interpretaciones p =
  [zip vs i | i <- interpretacionesVar (length vs)]
  where vs = nub (variables p)
 
-- (interpretacionesVar n) es la lista de las interpretaciones de n
-- variables. Por ejemplo,
--    λ> interpretacionesVar 2
--    [[False,False],
--     [False,True],
--     [True,False],
--     [True,True]]
interpretacionesVar :: Int -> [[Bool]]
interpretacionesVar 0 = [[]]
interpretacionesVar n = map (False:) bss ++ map (True:) bss
  where bss = interpretacionesVar (n-1)
 
-- (variables p) es la lista de las variables de la fórmula p. Por
-- ejemplo,
--    λ> variables (Impl (Var 'A') (Conj (Const False) (Neg (Var 'B'))))
--    "AB"
--    λ> variables (Impl (Var 'A') (Conj (Var 'A') (Neg (Var 'B'))))
--    "AAB"
variables :: FProp -> [Char]
variables (Const _)  = []
variables (Var x)    = [x]
variables (Neg p)    = variables p
variables (Conj p q) = variables p ++ variables q
variables (Impl p q) = variables p ++ variables q


Soluciones en Python

from dataclasses import dataclass
 
 
@dataclass
class FProp:
    pass
 
@dataclass
class Const(FProp):
    x: bool
 
@dataclass
class Var(FProp):
    x: str
 
@dataclass
class Neg(FProp):
    x: FProp
 
@dataclass
class Conj(FProp):
    x: FProp
    y: FProp
 
@dataclass
class Impl(FProp):
    x: FProp
    y: FProp
 
Interpretacion = list[tuple[str, bool]]
 
# variables(p) es la lista de las variables de la fórmula p. Por
# ejemplo,
#    >>> variables (Impl(Var('A'), Conj(Const(False), Neg (Var('B')))))
#    ['A', 'B']
#    >>> variables (Impl(Var('A'), Conj(Var('A'), Neg (Var('B')))))
#    ['A', 'A', 'B']
def variables(f: FProp) -> list[str]:
    match f:
        case Const(_):
            return []
        case Var(x):
            return [x]
        case Neg(p):
            return variables(p)
        case Conj(p, q):
            return variables(p) + variables(q)
        case Impl(p, q):
            return variables(p) + variables(q)
    assert False
 
# interpretacionesVar(n) es la lista de las interpretaciones de n
# variables. Por ejemplo,
#    >>> interpretacionesVar 2
#    [[False, False],
#     [False, True],
#     [True, False],
#     [True, True]]
def interpretacionesVar(n: int) -> list[list[bool]]:
    if n == 0:
        return [[]]
    bss = interpretacionesVar(n-1)
    return [[False] + x for x in bss] + [[True] + x for x in bss]
 
def interpretaciones(f: FProp) -> list[Interpretacion]:
    vs = list(set(variables(f)))
    return [list(zip(vs, i)) for i in interpretacionesVar(len(vs))]