Capicúas productos de dos números de dos dígitos

El número 9009 es capicúa y es producto de dos números de dos dígitos, pues 9009 = 91×99.

Definir la lista

cuyos elementos son los números capicúas que son producto de 2 números de dos dígitos. Por ejemplo,

Soluciones

Pensamiento

Ayudadme a comprender lo que os digo, y os lo explicaré más despacio.

Antonio Machado

Listas equidigitales

Una lista de números naturales es equidigital si todos sus elementos tienen el mismo número de dígitos.

Definir la función

tal que (equidigital xs) se verifica si xs es una lista equidigital. Por ejemplo,

Soluciones

Pensamiento

Se miente más de la cuenta
por falta de fantasía:
también la verdad se inventa.

Antonio Machado

Número medio

Un número medio es número natural que es igual a la media aritmética de las permutaciones de sus dígitos. Por ejemplo, 370 es un número medio ya que las permutaciones de sus dígitos es 073, 037, 307, 370, 703 y 730 cuya media es 2220/6 que es igual a 370.

Definir las siguientes funciones

tales que

  • (numeroMedio n) se verifica si n es un número medio. Por ejemplo,

  • densidades es la lista cuyo elemento n-ésimo (empezando a contar en 1) es la densidad de números medios en el intervalo [1,n]; es decir, la cantidad de números medios menores o iguales que n dividida por n. Por ejemplo,

  • (graficaDensidadNumeroMedio n) dibuja la gráfica de las densidades de
    los intervalos [1,k] para k desde 1 hasta n. Por ejemplo, (graficaDensidadNumeroMedio 100) dibuja

    y (graficaDensidadNumeroMedio 1000) dibuja

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Tren de potencias

Si n es el número natural cuya expansión decimal es abc… , el tren de potencias de n es a^bc^d… donde el último exponente es 1, si n tiene un número impar de dígitos. Por ejemplo

Definir las funciones

tales que

  • (trenDePotencias n) es el tren de potencia de n. Por ejemplo.

  • (esPuntoFijoTrenDePotencias n) se verifica si n es un punto fijo de trenDePotencias; es decir, (trenDePotencias n) es igual a n. Por ejemplo,

  • puntosFijosTrenDePotencias es la lista de los puntso fijos de trenDePotencias. Por ejemplo,

  • (tablaTrenDePotencias a b) es la tabla de los trenes de potencias de los números entre a y b. Por ejemplo,

Comprobar con QuickCheck que entre 2593 y 24547284284866559999999999 la función trenDePotencias no tiene puntos fijos.

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Números construidos con los dígitos de un conjunto dado

Definir las siguientes funciones

tales que

  • (numerosCon ds) es la lista de los números que se pueden construir con los dígitos de ds (cuyos elementos son distintos elementos del 1 al 9) . Por ejemplo,

  • (numeroDeDigitos ds k) es el número de dígitos que tiene el k-ésimo elemento (empezando a contar en 0) de la sucesión (numerosCon ds). Por ejemplo,

Soluciones

Polinomio digital

Definir la función

tal que (polinomioDigital n) es el polinomio cuyos coeficientes son los dígitos de n. Por ejemplo,

Nota: Este ejercicio debe realizarse usando únicamente las funciones de la librería I1M.Pol que se encuentra aquí y se describe aquí.

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Notas de evaluación acumulada

La evaluación acumulada, las notas se calculan recursivamente con la siguiente función

donde E(k) es la nota del examen k. Por ejemplo, si las notas de los exámenes son [3,7,6,3] entonces las acumuladas son [3.0,7.0,6.4,4.4]

Las notas e los exámenes se encuentran en ficheros CSV con los valores separados por comas. Cada línea representa la nota de un alumno, el primer valor es el identificador del alumno y los restantes son sus notas. Por ejemplo, el contenido de examenes.csv es

Definir las funciones

tales que

  • (acumuladas xs) es la lista de las notas acumuladas (redondeadas con un decimal) de los notas de los exámenes xs. Por ejemplo,

  • (notasAcumuladas f1 f2) que escriba en el fichero f2 las notas acumuladas correspondientes a las notas de los exámenes del fichero f1. Por ejemplo, al evaluar

escribe en el fichero acumuladas.csv

Soluciones

Números superpares

Definir la función

tal que (superpar n) se verifica si n es un número par tal que todos sus dígitos son pares. Por ejemplo,

Soluciones

Mayor número obtenido intercambiando dos dígitos

Definir la función

tal que (maximoIntercambio x) es el máximo número que se puede obtener intercambiando dos dígitos de x. Por ejemplo,

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Soluciones

Suma de los dígitos de las repeticiones de un número

Dados dos números naturales n y x, su suma reducida se obtiene a partir del número obtenido repitiendo n veces el x sumando sus dígitos hasta obtener un número con sólo un dígito. Por ejemplo, si n es 3 y x es 24 las transformaciones son

Análogamente, si n es 4 y x es 7988 las transformaciones son

Definir las funciones

tales que

  • (sumaReducidaDigitosRepeticiones n x) es la suma reducida de n repeticiones de x. Por ejemplo

  • (grafica n) dibuja la gráfica de los n primeros elementos de la sucesión cuyo elementos k-ésimo es (sumaReducidaDigitosRepeticiones k k). Por ejemplo, (grafica 50) dibuja
    Suma_de_los_digitos_de_las_repeticiones_de_un_numero50

Soluciones

Menor potencia de 2 que comienza por n

Definir las funciones

tales que

  • (menorPotencia n) es el par (k,m) donde m es la menor potencia de 2 que empieza por n y k es su exponentes (es decir, 2^k = m). Por ejemplo,

  • (graficaMenoresExponentes n) dibuja la gráfica de los exponentes de 2 en las menores potencias de los n primeros números enteros positivos. Por ejemplo, (graficaMenoresExponentes 200) dibuja
    Menor_potencia_de_2_que_comienza_por_n

Soluciones

Menor número divisible por 10^n cuyos dígitos suman n

Definir la función

tal que (menor n) es el menor número divisible por 10^n cuyos dígitos suman n. Por ejemplo,

Soluciones

Números trimórficos

Un número trimórfico es un número cuyo cubo termina en dicho número. Por ejemplo, 24 es trimórfico ya que 24^3 = 13824 termina en 24.

Para cada entero positivo n, la densidad de trimórficos hasta n es el cociente entre la cantidad de números trimórficos menores o iguales que n y el número n. Por ejemplo, hasta 10 hay 6 números trimórficos (0, 1, 4, 5, 6 y 9); por tanto, la densidad hasta 10 es 6/10 = 0.6.

Definir las funciones

tal que

  • trimorficos es la lista de los números trimórficos. Por ejemplo,

  • (densidadTrimorficos n) es la densidad de trimórficos hasta n. Por ejemplo,

Soluciones

Dígitos iniciales

Definir las funciones

tales que

  • digitosIniciales es la lista de los dígitos iniciales de los números naturales. Por ejemplo,

  • (graficaDigitosIniciales n) dibuja la gráfica de los primeros n términos de la sucesión digitosIniciales. Por ejemplo, (graficaDigitosIniciales 100) dibuja
    Digitos_iniciales_100
    y (graficaDigitosIniciales 1000) dibuja
    Digitos_iniciales_1000

Soluciones

Sucesión de Lichtenberg

La sucesión de Lichtenberg esta formada por la representación decimal de los números binarios de la sucesión de dígitos 0 y 1 alternados Los primeros términos de ambas sucesiones son

Definir las funciones

tales que

  • lichtenberg es la lista cuyos elementos son los términos de la sucesión de Lichtenberg. Por ejemplo,

  • (graficaLichtenberg n) dibuja la gráfica del número de dígitos de los n primeros términos de la sucesión de Lichtenberg. Por ejemlo, (graficaLichtenberg 100) dibuja
    Sucesion_de_Lichtenberg

Comprobar con QuickCheck que todos los términos de la sucesión de Lichtenberg, a partir del 4º, son números compuestos.

Soluciones

Escalada hasta un primo

Este ejercicio está basado en el artículo La conjetura de la «escalada hasta un primo» publicado esta semana por Miguel Ángel Morales en su blog Gaussianos.

La conjetura de escalada hasta un primo trata, propuesta por John Horton Conway, es sencilla de plantear, pero primero vamos a ver qué es eso de escalar hasta un primo. Tomamos un número cualquiera y lo descomponemos en factores primos (colocados en orden ascendente). Si el número era primo, ya hemos acabado; si no era primo, construimos el número formado por los factores primos y los exponentes de los mismos colocados tal cual salen en la factorización. Con el número obtenido hacemos lo mismo que antes. La escalada finaliza cuando obtengamos un número primo. Por ejemplo, para obtener la escalada prima de 1400, como no es primo, se factoriza (obteniéndose 2^3 * 5^2 * 7) y se unen bases y exponentes (obteniéndose 23527). Con el 23527 se repite el proceso obteniéndose la factorización (7 * 3361) y su unión (73361). Como el 73361 es primo, termina la escalada. Por tanto, la escalada de 1400 es [1400,23527,73361].

La conjetura de Conway sobre «escalada hasta un primo» dice que todo número natural mayor o igual que 2 termina su escalada en un número primo.

Definir las funciones

tales que

  • (escaladaPrima n) es la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrima n) es la longitud de la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrimaAcotada n k) es el mínimo entre la longitud de la escalada prima de n y k. Por ejemplo,

  • (graficaEscalada n k) dibuja la gráfica de (longitudEscaladaPrimaAcotada x k) para x entre 2 y n. Por ejemplo, (graficaEscalada 120 15) dibuja
    Escalada_hasta_un_primo

Soluciones

Números somirp

Un número omirp es un número primo que forma un primo distinto al invertir el orden de sus dígitos.

Definir las funciones

tales que

  • (esOmirp n) se verifica si n es un número omirp. Por ejemplo,

  • omirps es la lista de los números omirps. Por ejemplo,

  • (nOmirpsIntermedios n) es la cantidad de números omirps entre el n-ésimo número omirp y el obtenido al invertir el orden de sus dígitos. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Números apocalípticos

Un número apocalíptico es aquel número natural n tal que 2^n contiene la secuencia 666.

Definir las funciones

tales que

  • (esApocaliptico n) se verifica si n es un número apocalíptico. Por ejemplo,

  • apocalipticos es la lista de los números apocalípticos. Por ejemplo,

  • (mayorNoApocalipticoMenor n) es justo el mayor número no apocalíptico menor que n. Por ejemplo,

  • (grafica n) dibuja las gráficas de los n primeros términos de la sucesión de los números apocalípticos junto con los de la sucesión a(n) = 3715+n. Por ejemplo, (grafica 3000) dibuja
    Numeros_apocalipticos_3000
    y (grafica 30000) dibuja
    Numeros_apocalipticos_30000

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Rotaciones divisibles por 8

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816 de las que 3 son divisibles por 8 (928160, 160928 y 92816).

Definir la función

tal que (nRotacionesDivisiblesPor8 x) es el número de rotaciones de x divisibles por 8. Por ejemplo,

Soluciones

Máximo de las rotaciones restringidas

Rotar un número a la iquierda significa pasar su primer dígito al final. Por ejemplo, rotando a la izquierda el 56789 se obtiene 67895.

Las rotaciones restringidas del número 56789 se obtienen como se indica a continución:

  • Se inicia con el propio número: 56789
  • El anterior se rota a la izquierda y se obtiene el 67895.
  • Del anterior se fija el primer dígito y se rota a la iquierda los otros. Se obtiene 68957.
  • Del anterior se fijan los 2 primeros dígito y se rota a la iquierda los otros. Se obtiene 68579.
  • Del anterior se fijan los 3 primeros dígito y se rota a la iquierda los otros. Se obtiene 68597.

El proceso ha terminado ya que conservando los cuatro primeros queda sólo un dígito que al girar es él mismo. Por tanto, la sucesión de las rotaciones restringidas de 56789 es

y su mayor elemento es 68957.

Definir la función

tal que (maxRotaciones n) es el máximo de las rotaciones restringidas del número n. Por ejemplo,

Soluciones

Menor x tal que los x múltiplos de n contienen todos los dígitos

Definir la función

tal que (menorX n) es el menor x tal que entre los x primeros múltiplos de n (es decir, entre n, 2×n, 3×n, … y x×n) contienen todos los dígitos al menos una vez. Por ejemplo, (menorX 92) es 6 ya que

Otros ejemplos

Soluciones

Sucesión contadora

Definir las siguientes funciones

tales que

  • (numeroContado n) es el número obtenido al contar las repeticiones de cada una de las cifras de n. Por ejemplo,

  • (contadora n) es la sucesión cuyo primer elemento es n y los restantes se obtienen contando el número anterior de la sucesión. Por ejemplo,

  • (lugarPuntoFijoContadora n k) es el menor i <= k tal que son iguales los elementos en las posiciones i e i+1 de la sucesión contadora que cominza con n. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz.

Soluciones

Cadenas de sumas de factoriales de los dígitos

Dado un número n se considera la sucesión cuyo primer término es n y los restantes se obtienen sumando los factoriales de los dígitos del anterior. Por ejemplo, la sucesión que empieza en 69 es

La cadena correspondiente a un número n son los términos de la sucesión que empieza en n hasta la primera repetición de un elemento en la sucesión. Por ejemplo, la cadena de 69 es

Consta de una parte no periódica ([69,363600]) y de una periódica ([1454,169,363601]).

Definir las funciones

tales que

  • (cadena n es la cadena correspondiente al número n. Por ejemplo,

  • (periodo n) es la parte periódica de la cadena de n. Por ejemplo,

Soluciones

Números dígito potenciales

Un número entero x es dígito potencial de orden n si x es la suma de los dígitos de x elevados a n. Por ejemplo,

  • 153 es un dígito potencial de orden 3 ya que 153 = 1^3+5^3+3^3
  • 4150 es un dígito potencial de orden 5 ya que 4150 = 4^5+1^5+5^5+0^5

Un número x es dígito auto potencial si es un dígito potencial de orden n, donde n es el número de dígitos de n. Por ejemplo, 153 es un número dígito auto potencial.

Definir las funciones

tales que

  • (digitosPotencialesOrden n) es la lista de los números dígito potenciales de orden n. Por ejemplo,

  • digitosAutoPotenciales es la lista de los números dígito auto potenciales. Por ejemplo,

Soluciones

Mayor número equidigital

Definir la función

tal que (mayorEquidigital x) es el mayor número que se puede contruir con los dígitos de x. Por ejemplo,

Soluciones

Biparticiones de un número

Definir la función

tal que (biparticiones n) es la lista de pares de números formados por las primeras cifras de n y las restantes. Por ejemplo,

Soluciones

Subnúmeros pares

Los subnúmeros de un número x son los números que se pueden formar con dígitos de x en posiciones consecutivas. Por ejemplo, el número 254 tiene 6 subnúmeros: 2, 5, 4, 25, 54 y 254.

Definir las funciones

tales que

  • (subnumerosPares x) es la lista de los subnúmeros pares de x. Por ejemplo,

  • (nSubnumerosPares x) es la cantidad de subnúmeros pares de x. Por ejemplo,

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones