Números con todos sus dígitos primos

Definir la lista

cuyos elementos son los números con todos sus dígitos primos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

Definir la función

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Familias de números con algún dígito en común

Una familia de números es una lista de números tal que todos tienen la misma cantidad de dígitos y, además, dichos números tienen al menos un dígito común.

Por ejemplo, los números 72, 32, 25 y 22 pertenecen a la misma familia ya que son números de dos dígitos y todos tienen el dígito 2, mientras que los números 123, 245 y 568 no pertenecen a la misma familia, ya que no hay un dígito que aparezca en los tres números.

Definir la función

tal que (esFamilia ns) se verifica si ns es una familia de números. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,

  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

Cadenas de primos complementarios

El complemento de un número positivo x se calcula por el siguiente procedimiento:

  • si x es mayor que 9, se toma cada dígito por su valor posicional y se resta del mayor los otro dígitos. Por ejemplo, el complemento de 1448 es 1000 – 400 – 40 – 8 = 552. Para
  • si x es menor que 10, su complemento es x.

Definir las funciones

tales que

  • (cadena x) es la cadena de primos a partir de x tal que cada uno es el complemento del anterior. Por ejemplo,

  • (conCadena n) es la lista de números cuyas cadenas tienen n elementos. Por ejemplo,

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

Soluciones

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

Definir la función

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Primos magnánimos

Un número magnánimo es un número tal que las sumas obtenidas insertando un «+» entre sus dígitos en cualquier posición son números primos. Por ejemplo, 4001 es un número magnánimo porque los números 4+001=5, 40+01=41 y 400+1=401 son primos.

Definir las funciones

tales que

  • (esMagnanimo n) se verifica si n es un número magnánimo. Por ejemplo,

  • primosMagnanimos es la lista de los números primos magnánimos. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Existe una distinción entre lo que se puede llamar un problema y lo que puede considerar un ejercicio. Este último sirve para entrenar al en alguna técnica o procedimiento, y requiere poco o ningún original. A diferencia de un ejercicio, un problema, si es apropiado para nivel, debe requerir pensamiento por parte del estudiante. Es imposible exagerar la importancia de los problemas en las matemáticas. Es por medio de los problemas que las matemáticas se desarrollan y se levantan por sí mismas. Cada nuevo descubrimiento en matemáticas es el resultado de un intento de resolver algún problema.»

Howard Eves.

Medias de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir las funciones

tales que

  • mediasDigitosDePi es la sucesión cuyo n-ésimo elemento es la media de los n primeros dígitos de pi. Por ejemplo,

  • (graficaMediasDigitosDePi n) dibuja la gráfica de los n primeros términos de mediasDigitosDePi. Por ejemplo,
    • (graficaMediasDigitosDePi 20) dibuja
    • (graficaMediasDigitosDePi 200) dibuja
    • (graficaMediasDigitosDePi 2000) dibuja

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

Es el mejor de los buenos
quien sabe que en esta vida
todo es cuestión de medida:
un poco más, algo menos.

Antonio Machado

Mayor equidigital

Definir la función

tal que (mayorEquidigital n) es el mayor número que se puede formar con los dígitos de n. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Un matemático, como un pintor o un poeta, es un creador de patrones. Si sus patrones son más permanentes que los de ellos, es porque están hechos con ideas.»

G. H. Hardy.

Números de Munchausen

Un número de Munchausen es un número entero positivo tal que es igual a la suma de sus dígitos elevados a sí mismo. Por ejemplo, 3435 es un número de Munchausen ya que

Definir la función

tal que (esMunchausen n) se verifica si n es un número de Munchausen. Por ejemplo,

Comprobar con QuickCheck que que los únicos números de Munchausen son 1 y 3435.

Nota 1: No usar la propiedad en la definición.

Nota 2: El ejercicio está basado en el artículo ¿Por qué 3435 es uno de mis números favoritos? de Miguel Ángel Morales en El Aleph.

Soluciones

Pensamiento

Escribiré en tu abanico:
te quiero para olvidarte,
para quererte te olvido.

Antonio Machado

Múltiplos palíndromos

Los números 545, 5995 y 15151 son los tres menores palíndromos (capicúas) que son divisibles por 109.

Definir las funciones

tales que

  • (multiplosPalindromos n) es la lista de los palíndromos divisibles por n. Por ejemplo,

  • (multiplosPalindromosMenores x n) es la lista de los palíndromos divisibles por n, menores que x. Por ejemplo,

Nota: Este ejercicio está basado en el problema 655 del Proyecto Euler.

Soluciones

Pensamiento

Esta luz de Sevilla… Es el palacio
donde nací, con su rumor de fuente.

Antonio Machado

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Nota: Este ejercicio está basado en el problema 8 del Proyecto Euler

Soluciones

Pensamiento

«El control de la complejidad es la esencia de la programación.» ~ B.W. Kernigan

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

Pensamiento

Era una noche del mes
de mayo, azul y serena.
Sobre el agudo ciprés
brillaba la luna llena.

Antonio Machado

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Soluciones

Pensamiento

A las palabras de amor
les sienta bien su poquito
de exageración.

Antonio Machado

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

Soluciones

Pensamiento

Mi corazón está donde ha nacido,
no a la vida, al amor, cerca del Duero.

Antonio Machado

Números como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,

  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

Pensamiento

Caminante, son tus huellas
el camino, y nada más;
caminante no hay camino,
se hace camino al andar.

Antonio Machado

Sucesión de Cantor de números innombrables

Un número es innombrable si es divisible por 7 o alguno de sus dígitos es un 7. Un juego infantil consiste en contar saltándose los números innombrables:

La sucesión de Cantor se obtiene llenando los huecos de la sucesión anterior:

Definir las funciones

tales que

  • sucCantor es la lista cuyos elementos son los términos de la sucesión de Cantor. Por ejemplo,

  • (graficaSucCantor n) es la gráfica de los n primeros términos de la sucesión de Cantor. Por ejemplo, (graficaSucCantor 200) dibuja

Soluciones

Pensamiento

Dices que nada se pierde
y acaso dices verdad;
pero todo lo perdemos
y todo nos perderá.

Antonio Machado

Medias de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir las funciones

tales que

  • mediasDigitosDePi es la sucesión cuyo n-ésimo elemento es la media de los n primeros dígitos de pi. Por ejemplo,

  • (graficaMediasDigitosDePi n) dibuja la gráfica de los n primeros términos de mediasDigitosDePi. Por ejemplo,
    • (graficaMediasDigitosDePi 20) dibuja
    • (graficaMediasDigitosDePi 200) dibuja
    • (graficaMediasDigitosDePi 2000) dibuja

Soluciones

Pensamiento

Es el mejor de los buenos
quien sabe que en esta vida
todo es cuestión de medida:
un poco más, algo menos.

Antonio Machado

Dígitos en las posiciones pares de cuadrados

Definir las funciones

tales que

  • (digitosPosParesCuadrado n) es el par formados por los dígitos de n² en la posiciones pares y por el número de dígitos de n². Por ejemplo,

  • (invDigitosPosParesCuadrado (xs,k)) es la lista de los números n tales que xs es la lista de los dígitos de n² en la posiciones pares y k es el número de dígitos de n². Por ejemplo,

Comprobar con QuickCheck que para todo entero positivo n se verifica que para todo entero positivo m, m pertenece a (invDigitosPosParesCuadrado (digitosPosParesCuadrado n)) si, y sólo si, (digitosPosParesCuadrado m) es igual a (digitosPosParesCuadrado n)

Soluciones

Pensamiento

¡Ojos que a la luz se abrieron
un día para, después,
ciegos tornar a la tierra,
hartos de mirar sin ver.

Antonio Machado

Números con dígitos 1 y 2

Definir las funciones

tales que

  • (numerosCon1y2 n) es la lista ordenada de números de n dígitos que se pueden formar con los dígitos 1 y 2. Por ejemplo,

  • (restosNumerosCon1y2 n) es la lista de los restos de dividir los elementos de (restosNumerosCon1y2 n) entre 2^n. Por ejemplo,

  • (graficaRestosNumerosCon1y2 n) dibuja la gráfica de los restos de dividir los elementos de (restosNumerosCon1y2 n) entre 2^n. Por ejemplo, (graficaRestosNumerosCon1y2 3) dibuja

(graficaRestosNumerosCon1y2 4) dibuja

y (graficaRestosNumerosCon1y2 5) dibuja

Nota: En la definición usar la función plotListStyle y como su segundo argumento (el PloStyle) usar

Comprobar con QuickCheck que todos los elementos de (restosNumerosCon1y2 n) son distintos.

Soluciones

Pensamiento

¿Para qué llamar caminos
a los surcos del azar? …
Todo el que camina anda,
como Jesús, sobre el mar.

Antonio Machado

Números primos en pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir las funciones

tales que

  • (nOcurrenciasPrimosEnPi n k) es la lista de longitud n cuyo i-ésimo elemento es el número de ocurrencias del i-ésimo número primo en los k primeros decimales del número pi. Por ejemplo,

ya que los 20 primeros decimales de pi son 14159265358979323846 y en ellos ocurre el 2 dos veces, el 3 ocurre 3 veces, el 5 ocurre 3 veces y el 7 ocurre 1 vez. Otros ejemplos son

  • (graficaPrimosEnPi n k) dibuja la gráfica del número de ocurrencias de los n primeros números primos en los k primeros dígitos de pi. Por ejemplo, (graficaPrimosEnPi 10 (10^4)) dibuja

(graficaPrimosEnPi 10 (10^6)) dibuja

y (graficaPrimosEnPi 50 (10^5)) dibuja

Soluciones

Pensamiento

Al borde del sendero un día nos sentamos.
Ya nuestra vida es tiempo, y nuestra sola cuita
son las desesperantes posturas que tomamos
para aguardar … Mas ella no faltará a la cita.

Antonio Machado

Cadena descendiente de subnúmeros

Una particularidad del 2019 es que se puede escribir como una cadena de dos subnúmeros consecutivos (el 20 y el 19).

Definir la función

tal que (cadena n) es la cadena de subnúmeros consecutivos de n cuya unión es n; es decir, es la lista de números [x,x-1,…x-k] tal que su concatenación es n. Por ejemplo,

Nota: Los subnúmeros no pueden empezar por cero. Por ejemplo, [10,09] no es una cadena de 1009 como se observa en el tercer ejemplo.

Soluciones

Pensamiento

La inseguridad, la incertidumbre, la desconfianza, son acaso nuestras únicas verdades. Hay que aferrarse a ellas.

Antonio Machado

El 2019 es apocalíptico

Un número natural n es apocalíptico si 2^n contiene la secuencia 666. Por ejemplo, 157 es apocalíptico porque 2^157 es 182687704666362864775460604089535377456991567872 que contiene la secuencia 666.

Definir las funciones

tales que

  • (esApocaliptico n) se verifica si n es un número apocalíptico. Por ejemplo,

  • apocalipticos es la lista de los números apocalípticos. Por ejemplo,

  • (posicionApocalitica n) es justo la posición de n en la sucesión de números apocalípticos, si n es apocalíptico o Nothing, en caso contrario. Por ejemplo,

Soluciones

Pensamiento

A vosotros no os importe pensar lo que habéis leído ochenta veces y oído
quinientas, porque no es lo mismo pensar que haber leído.

Antonio Machado

Grado exponencial

El grado exponencial de un número n es el menor número x mayor que 1 tal que n es una subcadena de n^x. Por ejemplo, el grado exponencial de 2 es 5 ya que 2 es una subcadena de 32 (que es 2^5) y no es subcadena de las anteriores potencias de 2 (2, 4 y 16). El grado exponencial de 25 es 2 porque 25 es una subcadena de 625 (que es 25^2).

Definir la función

tal que (gradoExponencial n) es el grado exponencial de n. Por ejemplo,

Soluciones

Referencia

Basado en la sucesión A045537 de la OEIS.

Pensamiento

«De cada diez novedades que pretenden descubrirnos, nueve son
tonterías. La décima y última, que no es necedad, resulta a última hora
que tampoco es nueva.»

Antonio Machado

Menor contenedor de primos

El n-ésimo menor contenenedor de primos es el menor número que contiene como subcadenas los primeros n primos. Por ejemplo, el 6º menor contenedor de primos es 113257 ya que es el menor que contiene como subcadenas los 6 primeros primos (2, 3, 5, 7, 11 y 13).

Definir la función

tal que (menorContenedor n) es el n-ésimo menor contenenedor de primos. Por ejemplo,

Soluciones

Pensamiento

¡Ya hay hombres activos!
Soñaba la charca
con sus mosquitos.

Antonio Machado

Números colinas

Se dice que un número natural n es una colina si su primer dígito es igual a su último dígito, los primeros dígitos son estrictamente creciente hasta llegar al máximo, el máximo se puede repetir y los dígitos desde el máximo al final son estrictamente decrecientes.

Definir la función

tal que (esColina n) se verifica si n es un número colina. Por ejemplo,

Soluciones

Referencia

Basado en el problema Is this number a hill number? de Code Golf

Pensamiento

Si me tengo que morir
poco me importa aprender.
Y si no puedo saber,
poco me importa vivir.

Antonio Machado