Productos de sumas de cuatro cuadrados

Definir la función

tal que (productoSuma4Cuadrados as bs cs ds) es el producto de las sumas de los cuadrados de cada una de las listas que ocupan la misma posición (hasta que alguna se acaba). Por ejemplo,

Comprobar con QuickCheckWith que si as, bs cs y ds son listas no vacías de enteros positivos, entonces (productoSuma4Cuadrados as bs cs ds) se puede escribir como la suma de los cuadrados de cuatro enteros positivos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

¿Vivir? Sencillamente:
la sed y el agua cerca …
o el agua lejos, más, la sed y el agua,
un poco de cansancio ¡y a beberla!.

Antonio Machado

Números sin 2 en base 3

Definir la sucesión

cuyos términos son los números cuya representación en base 3 no contiene el dígito 2. Por ejemplo,

Se observa que

  • 12 está en la sucesión ya que su representación en base 3 es 110 (porque 1·3² + 1·3¹ + 0.3⁰ = 12) y no contiene a 2.
  • 14 no está en la sucesión ya que su representación en base 3 es 112 (porque 1·3² + 1·3¹ + 2.3⁰ = 14) y contiene a 2.

Comprobar con QuickCheck que las sucesiones numerosSin2EnBase3 y sucesionSin3enPA (del ejercicio anterior) son iguales; es decir, para todo número natural n, el n-ésimo término de numerosSin2EnBase3 es igual al n-ésimo término de sucesionSin3enPA.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

O que yo pueda asesinar un día
en mi alma, al despertar, esa persona
que me hizo el mundo mientras yo dormía.

Antonio Machado

Máximos locales en los números de descomposiciones de Goldbach

La conjetura de Goldbach afirma que todo número entero mayor que 2 se puede expresar como suma de dos primos.

Las descomposiciones de Goldbach son las maneras de expresar un número como suma de dos primos. Por ejemplo, el número 10 tiene dos descomposiciones de Goldbach ya que se puede expresar como la suma de 3 y 7 y la suma de 5 y 5.

Definir las funciones

tales que

  • (descomposicionesGoldbach n) es la lista de las descomposiciones de Goldbach del número n. Por ejemplo,

  • (numeroGolbach n) es el número de descomposiciones de Goldbach del número n. Por ejemplo,

  • (tieneMaximoLocalGoldbach n) se verifica si en n se alcanza un máximo local en el número de descomposiciones de Goldbach; es decir, los números n tales que el número de descomposiciones de Goldbach de n es mayor o igual que las de n-1 y las de n+1. Por ejemplo,

En el ejemplo anterior se comprueba que en los múltiplos de 6 (es decir, en 6, 12, 18, 24, 30, 36 y 42), el número de descomposiciones de Goldbach alcanza un máximo local. Comprobar con QuickCheck que esta propiedad se cumple en general; es decir, para todo entero positivo n, el número de descomposiciones de Goldbach en 6n es un máximo local.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Referencia

Pensamiento

Te abanicaras
con un madrigal que diga:
en amor el olvido pone la sal.

Antonio Machado

Teorema de la amistad

El teorema de la amistad afirma que

En cualquier reunión de n personas hay al menos dos personas que tienen el mismo número de amigos (suponiendo que la relación de amistad es simétrica).

Se pueden usar las siguientes representaciones:

  • números enteros para representar a las personas,
  • pares de enteros (x,y), con x < y, para representar que la persona x e y son amigas y
  • lista de pares de enteros para representar la reunión junto con las relaciones de amistad.

Por ejemplo, [(2,3),(3,5)] representa una reunión de tres personas
(2, 3 y 5) donde

  • 2 es amiga de 3,
  • 3 es amiga de 2 y 5 y
  • 5 es amiga de 3.
    Si clasificamos las personas poniendo en la misma clase las que tienen el mismo número de amigos, se obtiene [[2,5],[3]] ya que 2 y 5 tienen 1 amigo y 3 tiene 2 amigos.

Definir la función

tal que (clasesAmigos r) es la clasificación según el número de amigos de las personas de la reunión r; es decir, la lista cuyos elementos son las listas de personas con 1 amigo, con 2 amigos y así hasta que se completa todas las personas de la reunión r. Por ejemplo,

Comprobar con QuickCheck el teorema de la amistad; es decir, si r es una lista de pares de enteros, entonces (clasesAmigos r’) donde r’ es la lista de los pares (x,y) de r con x < y y se supone que r’ es no vacía.

Soluciones

Referencia

Pensamiento

Me dijo el agua clara que reía,
bajo el sol, sobre el mármol de la fuente:
si te inquieta el enigma del presente
aprende el son de la salmodia mía.

Antonio Machado

Las conjeturas de Catalan y de Pillai

La conjetura de Catalan, enunciada en 1844 por Eugène Charles Catalan y demostrada 2002 por Preda Mihăilescu1, afirma que

Las únicas dos potencias de números enteros consecutivos son 8 y 9 (que son respectivamente 2³ y 3²).

En otras palabras, la única solución entera de la ecuación

para x, a, y, b > 1 es x = 3, a = 2, y = 2, b = 3.

La conjetura de Pillai, propuesta por S.S. Pillai en 1942, generaliza este resultado y es un problema abierto. Afirma que cada entero se puede escribir sólo un número finito de veces como una diferencia de dos potencias perfectas. En otras palabras, para todo entero positivo n, el conjunto de soluciones de

para x, a, y, b > 1 es finito.

Por ejemplo, para n = 4, hay 3 soluciones

Las soluciones se pueden representar por la menor potencia (en el caso anterior, por 4, 32 y 121) ya que dado n (en el caso anterior es 4), la potencia mayor es la menor más n.

Definir las funciones

tales que

  • potenciasPerfectas es la lista de las potencias perfectas (es decir, de los números de la forma x^a con x y a mayores que 1). Por ejemplo,

  • (solucionesPillati n) es la lista de las menores potencias de las soluciones de la ecuación de Pillati x^a – y^b = n; es decir, es la lista de los u tales que u y u+n son potencias perfectas. Por ejemplo,

  • (solucionesPillatiAcotadas c n) es la lista de elementos de (solucionesPillati n) menores que n. Por ejemplo,

Soluciones

Referencia

Pensamiento

Y te enviaré mi canción:
«Se canta lo que se pierde»,
con un papagayo verde
que la diga en tu balcón.

Antonio Machado

Teorema de Hilbert-Waring

El problema de Waring, propuesto por Edward Waring consiste en déterminar si, para cada número entero k mayor que 1, existe un número n tal que todo entero positivo se puede escribir como una suma de k-potencias de números positivos con n sumandos como máximo.

La respuesta afirmativa al problema, aportada por David Hilbert, se conoce como el teorema de Hilbert-Waring. Su enunciado es

Para cada número entero k, con k ≥ 2, existe un entero positivo g(k) tal que todo entero positivo se puede expresar como una suma de a lo más g(k) k-ésimas potencias.

Definir las funciones

tales que

  • (descomposiciones x k n) es la lista de descomposiciones de x como suma de n potencias con exponente k de números enteros positivos.

  • (orden x k) es el menor número de sumandos necesario para expresar x como suma de k-ésimas potencias. Por ejemplo,

Comprobar el teorema de Hilbert-Waring para k hasta 7; es decir, para todo número x positivo se verifica que

y, en general,

Soluciones

Referencia

Pensamiento

¡Y en la tersa arena,
cerca de la mar,
tu carne rosa y morena,
súbitamente Guiomar!

Antonio Machado

La mayor potencia de dos no es divisor

Para cada número entero positivo n, se define el conjunto

de los números desde el 1 hasta n.

Definir la función

tal que (mayorPotenciaDeDosEnS n) es la mayor potencia de 2 en S(n). Por ejemplo,

Comprobar con QuickCheck que la mayor potencia de 2 en S(n) no divide a ningún otro elemento de S(n).

Soluciones

Referencia

Pensamiento

¡Sólo tu figura,
como una centella blanca,
en mi noche oscura.

Antonio Machado

Teorema de Liouville sobre listas CuCu

Una lista CuCu es una lista de números enteros positivos tales que la suma de sus Cubos es igual al Cuadrado de su suma. Por ejemplo, [1, 2, 3, 2, 4, 6] es una lista CuCu ya que

La lista de Liouville correspondiente al número entero positivo n es la lista formada por el número de divisores de cada divisor de n. Por ejemplo, para el número 20 se tiene que sus divisores son

puesto que el número de sus divisores es

  • El 1 tiene 1 divisor (el 1 solamente).
  • El 2 tiene 2 divisores (el 1 y el 2).
  • El 4 tiene 3 divisores (el 1, el 2 y el 4).
  • El 5 tiene 2 divisores (el 1 y el 5).
  • El 10 tiene 4 divisores (el 1, el 2, el 5 y el 10).
  • El 20 tiene 6 divisores (el 1, el 2, el 4, el 5, el 10 y el 20).

la lista de Liouville de 20 es [1, 2, 3, 2, 4, 6] que, como se comentó anteriormente, es una lista CuCu.

El teorema de Lioville afirma que todas las lista de Lioville son CuCu.

Definir las funciones

tales que

  • (esCuCu xs) se verifica si la lista xs es CuCu; es decir, la suma de los cubos de sus elementos es igual al cuadrado de su suma. Por ejemplo,

  • (liouville n) es la lista de Lioville correspondiente al número n. Por ejemplo,

Comprobar con QuickCheck

  • que para todo entero positivo n, (liouville (2^n)) es la lista [1,2,3,…,n+1] y
  • el teorema de Lioville; es decir, para todo entero positivo n, (liouville n) es una lista CuCu.

Nota: Este ejercicio está basado en Cómo generar conjuntos CuCu de Gaussianos.

Soluciones

Pensamiento

¡Oh, tarde viva y quieta
que opuso al panta rhei su nada corre.

Antonio Machado

Conjetura de Grimm

La conjetura de Grimm establece que a cada elemento de un conjunto de números compuestos consecutivos se puede asignar un número primo que lo divide, de forma que cada uno de los números primos elegidos es distinto de todos los demás. Más formalmente, si n+1, n+2, …, n+k son números compuestos, entonces existen números primos p(i), distintos entre sí, tales que p(i) divide a n+i para 1 ≤ i ≤ k.

Diremos que la lista ps = [p(1),…,p(k)] es una sucesión de Grim para la lista xs = [x(1),…,x(k)] si p(i) son números primos distintos y p(i) divide a x(i), para 1 ≤ i ≤ k. Por ejemplo, 2, 5, 13, 3, 7 es una sucesión de Grim de 24, 25, 26, 27, 28.

Definir las funciones

tales que

  • (compuestos n) es la mayor lista de números enteros consecutivos empezando en n. Por ejemplo,

  • (sucesionesDeGrim xs) es la lista de las sucesiones de Grim de xs. Por ejemplo,

Comprobar con QuickCheck la conjetura de Grim; es decir, para todo número n > 1, (sucesionesDeGrim (compuestos n)) es una lista no vacía.

Soluciones

Pensamiento

De encinar en encinar
se va fatigando el día.

Antonio Machado

Teorema de Carmichael

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comieanza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

El teorema de Carmichael establece que para todo n mayor que 12, el n-ésimo número de Fibonacci F(n) tiene al menos un factor primo que no es factor de ninguno de los términos anteriores de la sucesión.

Si un número primo p es un factor de F(n) y no es factor de ningún F(m) con m < n, entonces se dice que p es un factor característico o un divisor primitivo de F(n).

Definir la función

tal que (factoresCaracteristicos n) es la lista de los factores característicos de F(n). Por ejemplo,

Comprobar con QuickCheck el teorema de Carmichael; es decir, para todo número entero (factoresCaracteristicos (13 + abs n)) es una lista no vacía.

Soluciones

Pensamiento

No puede ser
amor de tanta fortuna:
dos soledades en una.

Antonio Machado

Postulado de Bertrand

El postulado de Bertrand afirma que para cualquier número entero n > 1, existe al menos un número primo p con n < p < 2n.

Definir la función

tal que (siguientePrimo n) es el menor primo mayor que n. Por ejemplo,

Comprobar con QuickCheck el postulado de Bertrand; es decir, para todo entero n > 1, se verifica que n < p < 2n, donde p es (siguientePrimo n).

Soluciones

Referencias

Pensamiento

Pero caer de cabeza,
en esta noche sin luna,
en medio de esta maleza,
junto a la negra laguna.

Antonio Machado

Posiciones de conjuntos finitos de naturales

En un ejercicio anterior se mostró que los conjuntos finitos de números naturales se pueden enumerar como sigue

en la que los elementos están ordenados de manera decreciente.

Además, se definió la constante

tal que sus elementos son los conjuntos de los números naturales con la ordenación descrita anteriormente. Por ejemplo,

Definir la función

tal que (posicion xs) es la posición del conjunto finito de números naturales xs, representado por una lista decreciente, en enumeracionCFN. Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Soluciones

Pensamiento

¡Volar sin alas donde todo es cielo!

Antonio Machado

Conjuntos con más sumas que restas

Dado un conjunto de números naturales, por ejemplo A = {0, 2, 3, 4}, calculamos las sumas de todos los pares de elementos de A. Como A tiene 4 elementos hay 16 pares, pero no todas sus sumas son distintas. En este caso solo hay 8 sumas distintas: {0, 2, 3, 4, 5, 6, 7, 8}. Procediendo análogamente hay 9 diferencias distinatas entre los pares de A: {-4, -3, -2, -1, 0, 1, 2, 3, 4}.

Experimentando con más conjuntos, se puede conjeturar que el número de restas es mayor que el de sumas y argumentar que que mientras que con dos números distintos sólo se produce una suma distints sin embargo se producen dos restas distintas. Por ejemplo, con 5 y 7 sólo se produce una suma (ya que 5+7 y 7+5 ambos dan 12) pero dos restas (ya que 5-7 y 7-5 dan -2 y 2, respectivamente).

Sin embargo, la conjetura es falsa. Un contraejemplo en el conjunto {0, 2, 3, 4, 7, 11, 12, 14}, que tiene 26 sumas distintas con sus pares de elementos pero sólo 25 restas.

Los conjuntos con más sumas distintas con sus pares de elementos que restas se llaman conjuntos MSQR (por «más sumas que restas»).

El objetivo de este ejercicio es calcular los conjuntos MSQR.

Definir las funciones

tales que

  • (tieneMSQR xs) se verifica si el conjunto xs tiene más sumas que restas. Por ejemplo,

  • conjuntosMSQR es la lista de los conjuntos MSQR. Por ejemplo,

Soluciones

Pensamiento

¡Qué fácil es volar, qué fácil es!
Todo consiste en no dejar que el suelo
se acerque a nuestros pies.

Antonio Machado

Enumeración de conjuntos finitos de naturales

Los conjuntos finitos de números naturales se pueden enumerar como sigue

en la que los elementos están ordenados de manera decreciente.

Definir la constante

tal que sus elementos son los conjuntos de los números naturales con la ordenación descrita anteriormente. Por ejemplo,

Comprobar con QuickCheck que

  • si (xs,ys) es un par de elementos consecutivos de enumeracionCFN, entonces xs < ys;
  • todo conjunto finito de números naturales, representado por una lista decreciente, está en enumeracionCFN.

Soluciones

Pensamiento

Junto al agua fría,
en la senda clara,
sombra dará algún día,
ese arbolillo en que nadie repara.

Antonio Machado

Suma de números de Fibonacci con índice impar

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comienza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

Definir la función

tal que (sumaFibsIndiceImpar n) es la suma de los n primeros términos de la sucesión de Fibonacci no índice impar; es decir,

Por ejemplo,

En los ejemplos anteriores se observa que

Comprobar con QuickCheck que (sumaFibsIndiceImpar n) es F(2n); es decir, el 2n-ésimo número de Fibonacci

Soluciones

Referencia

Pensamiento

El corazón del poeta, tan rico en sonoridades, es casi un insulto a la afonía cordial de la masa.

Antonio Machado

Árbol binario de divisores

El árbol binario de los divisores de 24 es

Se puede representar por

usando el tipo de dato definido por

Análogamente se obtiene el árbol binario de cualquier número x: se comienza en x y en cada paso se tiene dos hijos (su menor divisor y su cociente) hasta obtener números primos en las hojas.

Definir las funciones

tales que

  • (arbolDivisores x) es el árbol binario de los divisores de x. Por ejemplo,

  • (hojasArbolDivisores x) es la lista de las hohas del árbol binario de los divisores de x. Por ejemplo

Soluciones

Pensamiento

Cuando el Ser que se es hizo la nada
y reposó que bien lo merecía,
ya tuvo el día noche, y compañía
tuvo el amante en la ausencia de la amada.

Antonio Machado

Intersección de listas infinitas crecientes

Definir la función

tal que (interseccion xss) es la intersección de la lista no vacía de listas infinitas crecientes xss; es decir, la lista de los elementos que pertenecen a todas las listas de xss. Por ejemplo,

Soluciones

Pensamiento

Dios no es el creador del mundo (según Martín), sino el creador de la nada.

Antonio Machado

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,

  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Pensamiento

El tiempo que la barba me platea,
cavó mis ojos y agrandó mi frente,
va siendo en mi recuerdo transparente,
y mientras más al fondo, más clarea.

Antonio Machado

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

Soluciones

Pensamiento

Largo es el camino de la enseñanza por medio de teorías; breve y eficaz por medio de ejemplos. ~ Séneca

Suma de primos menores

La suma de los primos menores que 10 es 2 + 3 + 5 + 7 = 17.

Definir la función

tal que (sumaPrimosMenores n) es la suma de los primos menores que n. Por ejemplo,

Nota: Este ejercicio está basado en el problema 10 del Proyecto Euler

Soluciones

Pensamiento

El movimiento no es nada esencial. La fuerza puede ser inmóvil (lo es en su estado de pureza); mas no por ello deja de ser activa.

Antonio Machado

Primos o cuadrados de primos

Definir la constante

cuyos elementos son los número primos o cuadrados de primos. Por ejemplo,

Comprobar con QuickCheck que las lista primosOcuadradosDePrimos y unifactorizables (definida en el ejercicio anterior) son iguales.

Soluciones

Pensamiento

Despacito y buena letra: el hacer las cosas bien importa más que el hacerlas.

Antonio Machado

Sublistas con producto dado

Definir las funciones

tales que

  • (sublistasConProducto n xs) es la lista de las sublistas de la lista ordenada estrictamente creciente xs (cuyos elementos son enteros mayores que 1) cuyo producto es el número entero n (con n mayor que 1). Por ejemplo,

  • unifactorizables es la lísta de los números enteros mayores que 1 que se pueden escribir sólo de una forma única como producto de enteros distintos mayores que uno. Por ejemplo,

Soluciones

Pensamiento

Y en el encinar,
¡luna redonda y beata,
siempre conmigo a la par!
Cerca de Úbeda la grande,
cuyos cerros nadie verá,
me iba siguiendo la luna
sobre el olivar.
Una luna jadeante,
siempre conmigo a la par.

Antonio Machado

Transformaciones lineales de números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 8 primeros números triangulares son

Para cada número triangular n existen números naturales a y b, tales que a . n + b también es triangular. Para n = 6, se tiene que

son números triangulares

Definir la función

tal que si n es triangular, (transformaciones n) es la lista de los pares (a,b) tales que a es un entero positivo y b el menor número tal que a . n + b es triangular. Por ejemplo,

Soluciones

Pensamiento

A la hora del rocío,
de la niebla salen
sierra blanca y prado verde.
¡El sol en los encinares!

Antonio Machado

Múltiplos con ceros y unos

Se observa que todos los primeros números naturales tienen al menos un múltiplo no nulo que está formado solamente por ceros y unos. Por ejemplo, 1×10=10, 2×5=10, 3×37=111, 4×25=100, 5×2=10, 6×185=1110; 7×143=1001; 8X125=1000; 9×12345679=111111111.

Definir la función

tal que (multiplosCon1y0 n) es la lista de los múltiplos de n cuyos dígitos son 1 ó 0. Por ejemplo,

Comprobar con QuickCheck que todo entero positivo tiene algún múltiplo cuyos dígitos son 1 ó 0.

Soluciones

Pensamiento

Huye del triste amor, amor pacato,
sin peligro, sin venda ni aventura,
que espera del amor prenda segura,
porque en amor locura es lo sensato.

Antonio Machado

Múltiplos palíndromos

Los números 545, 5995 y 15151 son los tres menores palíndromos (capicúas) que son divisibles por 109.

Definir las funciones

tales que

  • (multiplosPalindromos n) es la lista de los palíndromos divisibles por n. Por ejemplo,

  • (multiplosPalindromosMenores x n) es la lista de los palíndromos divisibles por n, menores que x. Por ejemplo,

Nota: Este ejercicio está basado en el problema 655 del Proyecto Euler.

Soluciones

Pensamiento

Esta luz de Sevilla… Es el palacio
donde nací, con su rumor de fuente.

Antonio Machado

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Nota: Este ejercicio está basado en el problema 8 del Proyecto Euler

Soluciones

Pensamiento

«El control de la complejidad es la esencia de la programación.» ~ B.W. Kernigan

Menor divisible por todos

Definir la función

tal que (menorDivisible a b) es el menor número divisible por todos los números desde a hasta b, ambos inclusive. Por ejemplo,

Nota: Este ejercicio está basado en el problema 5 del Proyecto Euler

Soluciones

Pensamiento

Será el peor de los malos
bribón que olvide
su vocación de diablo.

Antonio Machado

Menor número triangular con más de n divisores

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, el 7º número triangular es

Los primeros 10 números triangulares son

Los divisores de los primeros 7 números triangulares son:

Como se puede observar, 28 es el menor número triangular con más de 5 divisores.

Definir la función

tal que (menorTriangularConAlMenosNDivisores n) es el menor número triangular que tiene al menos n divisores. Por ejemplo,

Nota: Este ejercicio está basado en el problema 12 del Proyecto Euler

Soluciones

Pensamiento

«La Matemática es una ciencia experimental y la computación es el experimento.» ~ Rivin

Números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, los 5 primeros números triangulares son

Definir la función

tal que triangulares es la lista de los números triangulares. Por ejemplo,

Comprobar con QuickCheck que entre dos números triangulares consecutivos siempre hay un número primo.

Soluciones

Pensamiento

Autores, la escena acaba
con un dogma de teatro:
En el principio era la máscara.

Antonio Machado

Factorización prima

La descomposición prima de 600 es

Definir la función

tal que (factorizacion x) ses la lista de las bases y exponentes de la descomposición prima de x. Por ejemplo,

Soluciones

Pensamiento

¿Todo para los demás?
Mancebo, llena tu jarro,
que ya te lo beberán.

Antonio Machado