Menu Close

Etiqueta: Orden superior

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

   sumasDeDosAbundantes :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

   take 10 sumasDeDosAbundantes  ==  [24,30,32,36,38,40,42,44,48,50]

Suma de divisores

Definir la función

   sumaDivisores :: Integer -> Integer

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

   sumaDivisores 12  ==  28
   sumaDivisores 25  ==  31
   sumaDivisores (product [1..25])  ==  93383273455325195473152000
   length (show (sumaDivisores (product [1..30000])))  ==  121289
   maximum (map sumaDivisores [1..10^5])  ==  403200

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Conjunto de divisores

Definir la función

   divisores :: Integer -> [Integer]

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

  divisores 30  ==  [1,2,3,5,6,10,15,30]
  length (divisores (product [1..10]))  ==  270
  length (divisores (product [1..25]))  ==  340032

Reconocimiento de potencias de 2

Definir la función

   esPotenciaDeDos :: Integer -> Bool

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

   esPotenciaDeDos    1        == True
   esPotenciaDeDos    2        == True
   esPotenciaDeDos    6        == False
   esPotenciaDeDos    8        == True
   esPotenciaDeDos 1024        == True
   esPotenciaDeDos 1026        == False
   esPotenciaDeDos (2^(10^8))  == True

Mínimo producto escalar

El producto escalar de los vectores [a1,a2,…,an] y [b1,b2,…, bn] es

   a1 * b1 + a2 * b2 + ··· + an * bn.

Definir la función

   menorProductoEscalar :: (Ord a, Num a) => [a] -> [a] -> a

tal que (menorProductoEscalar xs ys) es el mínimo de los productos escalares de las permutaciones de xs y de las permutaciones de ys. Por ejemplo,

   menorProductoEscalar [3,2,5]  [1,4,6]    == 29
   menorProductoEscalar [3,2,5]  [1,4,-6]   == -19
   menorProductoEscalar [1..10^2] [1..10^2] == 171700
   menorProductoEscalar [1..10^3] [1..10^3] == 167167000
   menorProductoEscalar [1..10^4] [1..10^4] == 166716670000
   menorProductoEscalar [1..10^5] [1..10^5] == 166671666700000
   menorProductoEscalar [1..10^6] [1..10^6] == 166667166667000000

Clausura de un conjunto respecto de una función

Un conjunto A está cerrado respecto de una función f si para elemento x de A se tiene que f(x) pertenece a A. La clausura de un conjunto B respecto de una función f es el menor conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo, la clausura de {0,1,2] respecto del opuesto es {-2,-1,0,1,2}.

Definir la función

   clausura :: Ord a => (a -> a) -> [a] -> [a]

tal que (clausura f xs) es la clausura de xs respecto de f. Por ejemplo,

   clausura (\x -> -x) [0,1,2]         ==  [-2,-1,0,1,2]
   clausura (\x -> (x+1) `mod` 5) [0]  ==  [0,1,2,3,4]
   length (clausura (\x -> (x+1) `mod` (10^6)) [0]) == 1000000

Números con todos sus dígitos primos

Definir la lista

   numerosConDigitosPrimos :: [Integer]

cuyos elementos son los números con todos sus dígitos primos. Por ejemplo,

   λ> take 22 numerosConDigitosPrimos
   [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
   λ> numerosConDigitosPrimos !! (10^7)
   322732232572

Producto cartesiano de una familia de conjuntos

Definir la función

   producto :: [[a]] -> [[a]]

tal que (producto xss) es el producto cartesiano de los conjuntos xss. Por ejemplo,

   λ> producto [[1,3],[2,5]]
   [[1,2],[1,5],[3,2],[3,5]]
   λ> producto [[1,3],[2,5],[6,4]]
   [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
   λ> producto [[1,3,5],[2,4]]
   [[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]]
   λ> producto []
   [[]]

Comprobar con QuickCheck que para toda lista de listas de números enteros, xss, se verifica que el número de elementos de (producto xss) es igual al producto de los números de elementos de cada una de las listas de xss.

Representación de Zeckendorf

Los primeros números de Fibonacci son

   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

   100 = 89 + 8 + 3

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

   100 = 89 +  8 + 2 + 1
   100 = 55 + 34 + 8 + 3

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

   zeckendorf :: Integer -> [Integer]

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

   zeckendorf 100 == [89,8,3]
   zeckendorf 200 == [144,55,1]
   zeckendorf 300 == [233,55,8,3,1]
   length (zeckendorf (10^50000)) == 66097