Menu Close

Etiqueta: length

Producto cartesiano de una familia de conjuntos

Definir la función

   producto :: [[a]] -> [[a]]

tal que (producto xss) es el producto cartesiano de los conjuntos xss. Por ejemplo,

   λ> producto [[1,3],[2,5]]
   [[1,2],[1,5],[3,2],[3,5]]
   λ> producto [[1,3],[2,5],[6,4]]
   [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
   λ> producto [[1,3,5],[2,4]]
   [[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]]
   λ> producto []
   [[]]

Comprobar con QuickCheck que para toda lista de listas de números enteros, xss, se verifica que el número de elementos de (producto xss) es igual al producto de los números de elementos de cada una de las listas de xss.

Soluciones

module Producto_cartesiano where
 
import Test.QuickCheck (quickCheck)
import Control.Monad (liftM2)
import Control.Applicative (liftA2)
 
-- 1ª solución
-- ===========
 
producto1 :: [[a]] -> [[a]]
producto1 []       = [[]]
producto1 (xs:xss) = [x:ys | x <- xs, ys <- producto1 xss]
 
-- 2ª solución
-- ===========
 
producto2 :: [[a]] -> [[a]]
producto2 []       = [[]]
producto2 (xs:xss) = [x:ys | x <- xs, ys <- ps]
  where ps = producto2 xss
 
-- 3ª solución
-- ===========
 
producto3 :: [[a]] -> [[a]]
producto3 []       = [[]]
producto3 (xs:xss) = inserta3 xs (producto3 xss)
 
-- (inserta xs xss) inserta cada elemento de xs en los elementos de
-- xss. Por ejemplo,
--    λ> inserta [1,2] [[3,4],[5,6]]
--    [[1,3,4],[1,5,6],[2,3,4],[2,5,6]]
inserta3 :: [a] -> [[a]] -> [[a]]
inserta3 [] _       = []
inserta3 (x:xs) yss = [x:ys | ys <- yss] ++ inserta3 xs yss
 
-- 4ª solución
-- ===========
 
producto4 :: [[a]] -> [[a]]
producto4 = foldr inserta4 [[]]
 
inserta4 :: [a] -> [[a]] -> [[a]]
inserta4 []     _   = []
inserta4 (x:xs) yss = map (x:) yss ++ inserta4 xs yss
 
-- 5ª solución
-- ===========
 
producto5 :: [[a]] -> [[a]]
producto5 = foldr inserta5 [[]]
 
inserta5 :: [a] -> [[a]] -> [[a]]
inserta5 xs yss = [x:ys | x <- xs, ys <- yss]
 
-- 6ª solución
-- ===========
 
producto6 :: [[a]] -> [[a]]
producto6 = foldr inserta6 [[]]
 
inserta6 :: [a] -> [[a]] -> [[a]]
inserta6 xs yss = concatMap (\x -> map (x:) yss) xs
 
-- 7ª solución
-- ===========
 
producto7 :: [[a]] -> [[a]]
producto7 = foldr inserta7 [[]]
 
inserta7 :: [a] -> [[a]] -> [[a]]
inserta7 xs yss = xs >>= (\x -> map (x:) yss)
 
-- 8ª solución
-- ===========
 
producto8 :: [[a]] -> [[a]]
producto8 = foldr inserta8 [[]]
 
inserta8 :: [a] -> [[a]] -> [[a]]
inserta8 xs yss = (:) <$> xs <*> yss
 
-- 9ª solución
-- ===========
 
producto9 :: [[a]] -> [[a]]
producto9 = foldr inserta9 [[]]
 
inserta9 :: [a] -> [[a]] -> [[a]]
inserta9 = liftA2 (:)
 
-- 10ª solución
-- ============
 
producto10 :: [[a]] -> [[a]]
producto10 = foldr (liftM2 (:)) [[]]
 
-- 11ª solución
-- ============
 
producto11 :: [[a]] -> [[a]]
producto11 = sequence
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_producto :: [[Int]] -> Bool
prop_producto xss =
  all (== producto1 xss)
      [ producto2 xss
      , producto3 xss
      , producto4 xss
      , producto5 xss
      , producto6 xss
      , producto7 xss
      , producto8 xss
      , producto9 xss
      , producto10 xss
      , producto11 xss
      ]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize = 9}) prop_producto
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> length (producto1 (replicate 7 [0..9]))
--    10000000
--    (10.51 secs, 10,169,418,496 bytes)
--    λ> length (producto2 (replicate 7 [0..9]))
--    10000000
--    (2.14 secs, 1,333,870,712 bytes)
--    λ> length (producto3 (replicate 7 [0..9]))
--    10000000
--    (3.33 secs, 1,956,102,056 bytes)
--    λ> length (producto4 (replicate 7 [0..9]))
--    10000000
--    (0.98 secs, 1,600,542,752 bytes)
--    λ> length (producto5 (replicate 7 [0..9]))
--    10000000
--    (2.10 secs, 1,333,870,288 bytes)
--    λ> length (producto6 (replicate 7 [0..9]))
--    10000000
--    (1.17 secs, 1,600,534,632 bytes)
--    λ> length (producto7 (replicate 7 [0..9]))
--    10000000
--    (0.35 secs, 1,600,534,352 bytes)
--    λ> length (producto8 (replicate 7 [0..9]))
--    10000000
--    (0.87 secs, 978,317,848 bytes)
--    λ> length (producto9 (replicate 7 [0..9]))
--    10000000
--    (1.38 secs, 1,067,201,016 bytes)
--    λ> length (producto10 (replicate 7 [0..9]))
--    10000000
--    (0.54 secs, 2,311,645,392 bytes)
--    λ> length (producto11 (replicate 7 [0..9]))
--    10000000
--    (1.32 secs, 1,067,200,992 bytes)
--
--    λ> length (producto7 (replicate 7 [1..14]))
--    105413504
--    (3.77 secs, 16,347,739,040 bytes)
--    λ> length (producto10 (replicate 7 [1..14]))
--    105413504
--    (5.11 secs, 23,613,162,016 bytes)
 
-- Comprobación de la propiedad
-- ============================
 
-- La propiedad es
prop_longitud :: [[Int]] -> Bool
prop_longitud xss =
  length (producto7 xss) == product (map length xss)
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize = 7}) prop_longitud
--    +++ OK, passed 100 tests.

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Ordenada cíclicamente

Se dice que una sucesión x(1), …, x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

   x(i), x(i+1), ..., x(n), x(1), ..., x(i-1)

está ordenada crecientemente de forma estricta.

Definir la función

   ordenadaCiclicamente :: Ord a => [a] -> Maybe Int

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

   ordenadaCiclicamente [1,2,3,4]      ==  Just 0
   ordenadaCiclicamente [5,8,1,3]      ==  Just 2
   ordenadaCiclicamente [4,6,7,5,1,3]  ==  Nothing
   ordenadaCiclicamente [1,0,3,2]      ==  Nothing
   ordenadaCiclicamente [1,2,0]        ==  Just 2
   ordenadaCiclicamente "cdeab"        ==  Just 3

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Soluciones

module Ordenada_ciclicamente where
 
import Test.QuickCheck (Arbitrary, Gen, NonEmptyList (NonEmpty), Property,
                        arbitrary, chooseInt, collect, quickCheck)
import Data.List       (nub, sort)
import Data.Maybe      (isJust, listToMaybe)
 
-- 1ª solución
-- ===========
 
ordenadaCiclicamente1 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente1 xs = aux 0 xs
  where n = length xs
        aux i zs
          | i == n      = Nothing
          | ordenada zs = Just i
          | otherwise   = aux (i+1) (siguienteCiclo zs)
 
-- (ordenada xs) se verifica si la lista xs está ordenada
-- crecientemente. Por ejemplo,
--   ordenada "acd"   ==  True
--   ordenada "acdb"  ==  False
ordenada :: Ord a => [a] -> Bool
ordenada []     = True
ordenada (x:xs) = all (x <) xs && ordenada xs
 
-- (siguienteCiclo xs) es la lista obtenida añadiendo el primer elemento
-- de xs al final del resto de xs. Por ejemplo,
--   siguienteCiclo [3,2,5]  =>  [2,5,3]
siguienteCiclo :: [a] -> [a]
siguienteCiclo []     = []
siguienteCiclo (x:xs) = xs ++ [x]
 
-- 2ª solución
-- ===========
 
ordenadaCiclicamente2 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente2 xs =
  listToMaybe [n | n <- [0..length xs-1],
                   ordenada (drop n xs ++ take n xs)]
 
-- 3ª solución
-- ===========
 
ordenadaCiclicamente3 :: Ord a => [a] -> Maybe Int
ordenadaCiclicamente3 xs
  | ordenada (bs ++ as) = Just k
  | otherwise           = Nothing
  where (_,k)   = minimum (zip xs [0..])
        (as,bs) = splitAt k xs
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_ordenadaCiclicamente1 :: NonEmptyList Int -> Bool
prop_ordenadaCiclicamente1 (NonEmpty xs) =
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente1
--    +++ OK, passed 100 tests.
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente2 :: NonEmptyList Int -> Property
prop_ordenadaCiclicamente2 (NonEmpty xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente2
--    +++ OK, passed 100 tests:
--    89% False
--    11% True
 
-- Tipo para generar listas
newtype Lista = L [Int]
  deriving Show
 
-- Generador de listas.
listaArbitraria :: Gen Lista
listaArbitraria = do
  x <- arbitrary
  xs <- arbitrary
  let ys = x : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  return (L (bs ++ as))
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista where
  arbitrary = listaArbitraria
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente3 :: Lista -> Property
prop_ordenadaCiclicamente3 (L xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente3
--    +++ OK, passed 100 tests (100% True).
 
-- Tipo para generar
newtype Lista2 = L2 [Int]
  deriving Show
 
-- Generador de listas
listaArbitraria2 :: Gen Lista2
listaArbitraria2 = do
  x' <- arbitrary
  xs <- arbitrary
  let ys = x' : xs
  k <- chooseInt (0, length ys)
  let (as,bs) = splitAt k (sort (nub ys))
  n <- chooseInt (0,1)
  return (if even n
          then L2 (bs ++ as)
          else L2 ys)
 
-- Lista es una subclase de Arbitrary.
instance Arbitrary Lista2 where
  arbitrary = listaArbitraria2
 
-- La propiedad para analizar los casos de prueba
prop_ordenadaCiclicamente4 :: Lista2 -> Property
prop_ordenadaCiclicamente4 (L2 xs) =
  collect (isJust (ordenadaCiclicamente1 xs)) $
  ordenadaCiclicamente1 xs == ordenadaCiclicamente2 xs
 
-- El análisis es
--    λ> quickCheck prop_ordenadaCiclicamente4
--    +++ OK, passed 100 tests:
--    51% True
--    49% False
 
-- La propiedad es
prop_ordenadaCiclicamente :: Lista2 -> Bool
prop_ordenadaCiclicamente (L2 xs) =
  all (== ordenadaCiclicamente1 xs)
      [ordenadaCiclicamente2 xs,
       ordenadaCiclicamente3 xs]
 
-- La comprobación es
--    λ> quickCheck prop_ordenadaCiclicamente
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> ordenadaCiclicamente1 ([100..4000] ++ [1..99])
--    Just 3901
--    (3.27 secs, 2,138,864,568 bytes)
--    λ> ordenadaCiclicamente2 ([100..4000] ++ [1..99])
--    Just 3901
--    (2.44 secs, 1,430,040,008 bytes)
--    λ> ordenadaCiclicamente3 ([100..4000] ++ [1..99])
--    Just 3901
--    (1.18 secs, 515,549,200 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Separación por posición

Definir la función

   particion :: [a] -> ([a],[a])

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

   particion [3,5,6,2]    ==  ([3,6],[5,2])
   particion [3,5,6,2,7]  ==  ([3,6,7],[5,2])
   particion "particion"  ==  ("priin","atco")

Soluciones

module Separacion_por_posicion where
 
import Data.List (partition)
import qualified Data.Vector as V ((!), fromList, length)
import Test.QuickCheck (quickCheck)
 
-- 1ª solución
-- ===========
 
particion1 :: [a] -> ([a],[a])
particion1 xs = ([x | (n,x) <- nxs, even n],
                 [x | (n,x) <- nxs, odd n])
  where nxs = enumeracion xs
 
--(numeracion xs) es la enumeración de xs. Por ejemplo,
--    enumeracion [7,9,6,8]  ==  [(0,7),(1,9),(2,6),(3,8)]
enumeracion :: [a] -> [(Int,a)]
enumeracion = zip [0..]
 
-- 2ª solución
-- ===========
 
particion2 :: [a] -> ([a],[a])
particion2 []     = ([],[])
particion2 (x:xs) = (x:zs,ys)
  where (ys,zs) = particion2 xs
 
-- 3ª solución
-- ===========
 
particion3 :: [a] -> ([a],[a])
particion3 = foldr f ([],[])
  where f x (ys,zs) = (x:zs,ys)
 
-- 4ª solución
-- ===========
 
particion4 :: [a] -> ([a],[a])
particion4 = foldr (\x (ys,zs) -> (x:zs,ys)) ([],[])
 
-- 5ª solución
-- ===========
 
particion5 :: [a] -> ([a],[a])
particion5 xs =
  ([xs!!k | k <- [0,2..n]],
   [xs!!k | k <- [1,3..n]])
  where n = length xs - 1
 
-- 6ª solución
-- ===========
 
particion6 :: [a] -> ([a],[a])
particion6 xs = (pares xs, impares xs)
 
-- (pares xs) es la lista de los elementos de xs en posiciones
-- pares. Por ejemplo,
--    pares [3,5,6,2]  ==  [3,6]
pares :: [a] -> [a]
pares []     = []
pares (x:xs) = x : impares xs
 
-- (impares xs) es la lista de los elementos de xs en posiciones
-- impares. Por ejemplo,
--    impares [3,5,6,2]  ==  [5,2]
impares :: [a] -> [a]
impares []     = []
impares (_:xs) = pares xs
 
-- 7ª solución
-- ===========
 
particion7 :: [a] -> ([a],[a])
particion7 [] = ([],[])
particion7 xs =
  ([v V.! k | k <- [0,2..n-1]],
   [v V.! k | k <- [1,3..n-1]])
  where v = V.fromList xs
        n = V.length v
 
-- 8ª solución
-- ===========
 
particion8 :: [a] -> ([a],[a])
particion8 xs =
  (map snd ys, map snd zs)
  where (ys,zs) = partition posicionPar (zip [0..] xs)
 
posicionPar :: (Int,a) -> Bool
posicionPar = even . fst
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_particion :: [Int] -> Bool
prop_particion xs =
  all (== particion1 xs)
      [particion2 xs,
       particion3 xs,
       particion4 xs,
       particion5 xs,
       particion6 xs,
       particion7 xs,
       particion8 xs]
 
-- La comprobación es
--    λ> quickCheck prop_particion
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> last (snd (particion1 [1..6*10^6]))
--    6000000
--    (2.74 secs, 2,184,516,080 bytes)
--    λ> last (snd (particion2 [1..6*10^6]))
--    6000000
--    (2.02 secs, 1,992,515,880 bytes)
--    λ> last (snd (particion3 [1..6*10^6]))
--    6000000
--    (3.17 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion4 [1..6*10^6]))
--    6000000
--    (3.23 secs, 1,767,423,240 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.62 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion5 [1..6*10^6]))
--    6000000
--    (1.33 secs, 1,032,516,192 bytes)
--    λ> last (snd (particion6 [1..6*10^6]))
--    6000000
--    (1.80 secs, 888,515,960 bytes)
--    λ> last (snd (particion7 [1..6*10^6]))
--    6000000
--    (1.29 secs, 1,166,865,672 bytes)
--    λ> last (snd (particion8 [1..6*10^6]))
--    6000000
--    (0.87 secs, 3,384,516,616 bytes)
--
--    λ> last (snd (particion5 [1..10^7]))
--    10000000
--    (1.94 secs, 1,720,516,872 bytes)
--    λ> last (snd (particion7 [1..10^7]))
--    10000000
--    (2.54 secs, 1,989,215,176 bytes)
--    λ> last (snd (particion8 [1..10^7]))
--    10000000
--    (1.33 secs, 5,640,516,960 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Número de inversiones

Se dice que en una sucesión de números x(1), x(2), …, x(n) hay una inversión cuando existe un par de números x(i) > x(j), siendo i < j. Por ejemplo, en la permutación 2, 1, 4, 3 hay dos inversiones (2 antes que 1 y 4 antes que 3) y en la permutación 4, 3, 1, 2 hay cinco inversiones (4 antes 3, 4 antes 1, 4 antes 2, 3 antes 1, 3 antes 2).

Definir la función

   numeroInversiones :: Ord a => [a] -> Int

tal que (numeroInversiones xs) es el número de inversiones de xs. Por ejemplo,

   numeroInversiones [2,1,4,3]  ==  2
   numeroInversiones [4,3,1,2]  ==  5

Soluciones

[schedule expon=’2022-04-21′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-21′ at=»06:00″]

import Test.QuickCheck (quickCheck)
import Data.Array ((!), listArray)
 
-- 1ª solución
-- ===========
 
numeroInversiones1 :: Ord a => [a] -> Int
numeroInversiones1 = length . indicesInversiones
 
-- (indicesInversiones xs) es la lista de los índices de las inversiones
-- de xs. Por ejemplo,
--    indicesInversiones [2,1,4,3]  ==  [(0,1),(2,3)]
--    indicesInversiones [4,3,1,2]  ==  [(0,1),(0,2),(0,3),(1,2),(1,3)]
indicesInversiones :: Ord a => [a] -> [(Int,Int)]
indicesInversiones xs = [(i,j) | i <- [0..n-2],
                                 j <- [i+1..n-1],
                                 xs!!i > xs!!j]
  where n = length xs
 
-- 2ª solución
-- ===========
 
numeroInversiones2 :: Ord a => [a] -> Int
numeroInversiones2 = length . indicesInversiones2
 
indicesInversiones2 :: Ord a => [a] -> [(Int,Int)]
indicesInversiones2 xs = [(i,j) | i <- [0..n-2],
                                  j <- [i+1..n-1],
                                  v!i > v!j]
  where n = length xs
        v = listArray (0,n-1) xs
 
-- 3ª solución
-- ===========
 
numeroInversiones3 :: Ord a => [a] -> Int
numeroInversiones3 = length . inversiones
 
-- (inversiones xs) es la lista de las inversiones  de xs. Por ejemplo,
--    Inversiones [2,1,4,3]  ==  [(2,1),(4,3)]
--    Inversiones [4,3,1,2]  ==  [(4,3),(4,1),(4,2),(3,1),(3,2)]
inversiones :: Ord a => [a] -> [(a,a)]
inversiones []     = []
inversiones (x:xs) = [(x,y) | y <- xs, y < x] ++ inversiones xs
 
-- 4ª solución
-- ===========
 
numeroInversiones4 :: Ord a => [a] -> Int
numeroInversiones4 []     = 0
numeroInversiones4 (x:xs) = length (filter (x>) xs) + numeroInversiones4 xs
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_numeroInversiones :: [Int] -> Bool
prop_numeroInversiones xs =
  all (== numeroInversiones1 xs)
      [numeroInversiones2 xs,
       numeroInversiones3 xs,
       numeroInversiones4 xs]
 
-- La comprobación es
--    λ> quickCheck prop_numeroInversiones
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> numeroInversiones1 [1200,1199..1]
--    719400
--    (2.30 secs, 236,976,776 bytes)
--    λ> numeroInversiones2 [1200,1199..1]
--    719400
--    (0.61 secs, 294,538,488 bytes)
--    λ> numeroInversiones3 [1200,1199..1]
--    719400
--    (0.26 secs, 150,543,056 bytes)
--    λ> numeroInversiones4 [1200,1199..1]
--    719400
--    (0.10 secs, 41,274,888 bytes)
--
--    λ> numeroInversiones3 [3000,2999..1]
--    4498500
--    (1.35 secs, 937,186,992 bytes)
--    λ> numeroInversiones4 [3000,2999..1]
--    4498500
--    (0.61 secs, 253,665,928 bytes)

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

   *     *      *
        * *    * *
              * * *
   1     3      6

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

    1 = 1
    3 = 1 + 2
    6 = 1 + 2 + 3
   10 = 1 + 2 + 3 + 4
   15 = 1 + 2 + 3 + 4 + 5

Definir la función

   triangularesConCifras :: Int -> [Integer]

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

   take 6 (triangularesConCifras 1)   ==  [1,3,6,55,66,666]
   take 6 (triangularesConCifras 2)   ==  [10,15,21,28,36,45]
   take 6 (triangularesConCifras 3)   ==  [105,120,136,153,190,210]
   take 5 (triangularesConCifras 4)   ==  [1035,1275,1326,1378,1485]
   take 2 (triangularesConCifras 10)  ==  [1062489753,1239845706]

Soluciones

import Data.List (nub)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
triangularesConCifras1 :: Int -> [Integer]
triangularesConCifras1 n =
  [x | x <- triangulares1,
       nCifras x == n]
 
-- triangulares1 es la lista de los números triangulares. Por ejemplo,
--    take 10 triangulares1 == [1,3,6,10,15,21,28,36,45,55]
triangulares1 :: [Integer]
triangulares1 = map triangular [1..]
 
triangular :: Integer -> Integer
triangular 1 = 1
triangular n = triangular (n-1) + n
 
-- (nCifras x) es el número de cifras distintas del número x. Por
-- ejemplo,
--    nCifras 325275  ==  4
nCifras :: Integer -> Int
nCifras = length . nub . show
 
-- 2ª solución
-- ===========
 
triangularesConCifras2 :: Int -> [Integer]
triangularesConCifras2 n =
  [x | x <- triangulares2,
       nCifras x == n]
 
triangulares2 :: [Integer]
triangulares2 = [(n*(n+1)) `div` 2 | n <- [1..]]
 
-- 3ª solución
-- ===========
 
triangularesConCifras3 :: Int -> [Integer]
triangularesConCifras3 n =
  [x | x <- triangulares3,
       nCifras x == n]
 
triangulares3 :: [Integer]
triangulares3 = 1 : [x+y | (x,y) <- zip [2..] triangulares3]
 
-- 4ª solución
-- ===========
 
triangularesConCifras4 :: Int -> [Integer]
triangularesConCifras4 n =
  [x | x <- triangulares4,
       nCifras x == n]
 
triangulares4 :: [Integer]
triangulares4 = 1 : zipWith (+) [2..] triangulares4
 
-- 5ª solución
-- ===========
 
triangularesConCifras5 :: Int -> [Integer]
triangularesConCifras5 n =
  [x | x <- triangulares5,
       nCifras x == n]
 
triangulares5 :: [Integer]
triangulares5 = scanl (+) 1 [2..]
 
-- Comprobación de equivalencia
-- ============================
 
-- La 1ª propiedad es
prop_triangularesConCifras1 :: Bool
prop_triangularesConCifras1 =
  [take 2 (triangularesConCifras1 n) | n <- [1..7]] ==
  [take 2 (triangularesConCifras2 n) | n <- [1..7]]
 
-- La comprobación es
--    λ> prop_triangularesConCifras1
--    True
 
-- La 2ª propiedad es
prop_triangularesConCifras2 :: Int -> Bool
prop_triangularesConCifras2 n =
  all (== take 5 (triangularesConCifras2 n'))
      [take 5 (triangularesConCifras3 n'),
       take 5 (triangularesConCifras4 n'),
       take 5 (triangularesConCifras5 n')]
  where n' = 1 + n `mod` 9
 
-- La comprobación es
--    λ> quickCheck prop_triangularesConCifras
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> (triangularesConCifras1 3) !! 220
--    5456556
--    (2.48 secs, 1,228,690,120 bytes)
--    λ> (triangularesConCifras2 3) !! 220
--    5456556
--    (0.01 secs, 4,667,288 bytes)
--
--    λ> (triangularesConCifras2 3) !! 600
--    500010500055
--    (1.76 secs, 1,659,299,872 bytes)
--    λ> (triangularesConCifras3 3) !! 600
--    500010500055
--    (1.67 secs, 1,603,298,648 bytes)
--    λ> (triangularesConCifras4 3) !! 600
--    500010500055
--    (1.20 secs, 1,507,298,248 bytes)
--    λ> (triangularesConCifras5 3) !! 600
--    500010500055
--    (1.15 secs, 1,507,298,256 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>