Producto cartesiano de una familia de conjuntos

Definir la función

tal que (producto xss) es el producto cartesiano de los conjuntos xss. Por ejemplo,

Comprobar con QuickCheck que para toda lista de listas de números enteros, xss, se verifica que el número de elementos de (producto xss) es igual al producto de los números de elementos de cada una de las listas de xss.

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Ordenada cíclicamente

Se dice que una sucesión x(1), …, x(n) está ordenada cíclicamente si existe un índice i tal que la sucesión

está ordenada crecientemente de forma estricta.

Definir la función

tal que (ordenadaCiclicamente xs) es el índice a partir del cual está ordenada, si la lista está ordenado cíclicamente y Nothing en caso contrario. Por ejemplo,

Nota: Se supone que el argumento es una lista no vacía sin elementos repetidos.

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Separación por posición

Definir la función

tal que (particion xs) es el par cuya primera componente son los elementos de xs en posiciones pares y su segunda componente son los restantes elementos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Número de inversiones

Se dice que en una sucesión de números x(1), x(2), …, x(n) hay una inversión cuando existe un par de números x(i) > x(j), siendo i < j. Por ejemplo, en la permutación 2, 1, 4, 3 hay dos inversiones (2 antes que 1 y 4 antes que 3) y en la permutación 4, 3, 1, 2 hay cinco inversiones (4 antes 3, 4 antes 1, 4 antes 2, 3 antes 1, 3 antes 2).

Definir la función

tal que (numeroInversiones xs) es el número de inversiones de xs. Por ejemplo,

Soluciones

[schedule expon=’2022-04-21′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-21′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Números triangulares con n cifras distintas

Los números triangulares se forman como sigue

La sucesión de los números triangulares se obtiene sumando los números naturales. Así, los 5 primeros números triangulares son

Definir la función

tal que (triangulares n) es la lista de los números triangulares con n cifras distintas. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Biparticiones de una lista

Definir la función

tal que (biparticiones xs) es la lista de pares formados por un prefijo de xs y el resto de xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Familias de números con algún dígito en común

Una familia de números es una lista de números tal que todos tienen la misma cantidad de dígitos y, además, dichos números tienen al menos un dígito común.

Por ejemplo, los números 72, 32, 25 y 22 pertenecen a la misma familia ya que son números de dos dígitos y todos tienen el dígito 2, mientras que los números 123, 245 y 568 no pertenecen a la misma familia, ya que no hay un dígito que aparezca en los tres números.

Definir la función

tal que (esFamilia ns) se verifica si ns es una familia de números. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

Soluciones

Cadenas de primos complementarios

El complemento de un número positivo x se calcula por el siguiente procedimiento:

  • si x es mayor que 9, se toma cada dígito por su valor posicional y se resta del mayor los otro dígitos. Por ejemplo, el complemento de 1448 es 1000 – 400 – 40 – 8 = 552. Para
  • si x es menor que 10, su complemento es x.

Definir las funciones

tales que

  • (cadena x) es la cadena de primos a partir de x tal que cada uno es el complemento del anterior. Por ejemplo,

  • (conCadena n) es la lista de números cuyas cadenas tienen n elementos. Por ejemplo,

Soluciones

Espacio de estados del problema de las N reinas

El problema de las N reinas consiste en colocar N reinas en tablero rectangular de dimensiones N por N de forma que no se encuentren más de una en la misma línea: horizontal, vertical o diagonal. Por ejemplo, una solución para el problema de las 4 reinas es

Los estados del problema de las N reinas son los tableros con las reinas colocadas. Inicialmente el tablero está vacío y, en cda paso se coloca una reina en la primera columna en la que aún no hay ninguna reina.

Cada estado se representa por una lista de números que indican las filas donde se han colocado las reinas. Por ejemplo, el tablero anterior se representa por [2,4,1,3].

Usando la librería de árboles Data.Tree, definir las funciones

tales que

  • (arbolReinas n) es el árbol de estados para el problema de las n reinas. Por ejemplo,

  • (nEstados n) es el número de estados en el problema de las n reinas. Por ejemplo,

  • (soluciones n) es la lista de estados que son soluciones del problema de las n reinas. Por ejemplo,

  • (nSoluciones n) es el número de soluciones del problema de las n reinas. Por ejemplo,

Soluciones

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Máxima longitud de sublistas crecientes

Definir la función

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,

  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,

  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,

  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.

Soluciones