Menu Close

Etiqueta: Gráficas

La sucesión ECG

La sucesión ECG estás definida por a(1) = 1, a(2) = 2 y, para n >= 3, a(n) es el menor natural que aún no está en la sucesión tal que a(n) tiene algún divisor común con a(n-1).

Los primeros términos de la sucesión son 1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, …

Al dibujar su gráfica, se parece a la de los electrocardiogramas (abreviadamente, ECG). Por ello, la sucesión se conoce como la sucesión ECG.

Definir las funciones

   sucECG :: [Integer]
   graficaSucECG :: Int -> IO ()

tales que

  • sucECG es la lista de los términos de la sucesión ECG. Por ejemplo,
     λ> take 20 sucECG
     [1,2,4,6,3,9,12,8,10,5,15,18,14,7,21,24,16,20,22,11]
     λ> sucECG !! 6000
     6237
  • (graficaSucECG n) dibuja la gráfica de los n primeros términos de la sucesión ECG. Por ejemplo, (graficaSucECG 160) dibuja

Soluciones

import Data.List (delete)
import Graphics.Gnuplot.Simple
 
sucECG :: [Integer]
sucECG = 1 : ecg 2 [2..]
  where ecg x zs = f zs
          where f (y:ys) | gcd x y > 1 = y : ecg y (delete y zs)
                         | otherwise   = f ys
 
graficaSucECG :: Int -> IO ()
graficaSucECG n =
  plotList [ Key Nothing
           , PNG "La_sucesion_ECG.png" 
           ]
           (take n sucECG)

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

   sucLoomis           :: Integer -> [Integer]
   convergencia        :: Integer -> Integer
   graficaConvergencia :: [Integer] -> IO ()

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,
     λ> take 15 (sucLoomis 1)
     [1,2,4,8,16,22,26,38,62,74,102,104,108,116,122]
     λ> take 15 (sucLoomis 2)
     [2,4,8,16,22,26,38,62,74,102,104,108,116,122,126]
     λ> take 15 (sucLoomis 3)
     [3,6,12,14,18,26,38,62,74,102,104,108,116,122,126]
     λ> take 15 (sucLoomis 4)
     [4,8,16,22,26,38,62,74,102,104,108,116,122,126,138]
     λ> take 15 (sucLoomis 5)
     [5,10,11,12,14,18,26,38,62,74,102,104,108,116,122]
     λ> take 15 (sucLoomis 20)
     [20,22,26,38,62,74,102,104,108,116,122,126,138,162,174]
     λ> take 15 (sucLoomis 100)
     [100,101,102,104,108,116,122,126,138,162,174,202,206,218,234]
     λ> sucLoomis 1 !! (2*10^5)
     235180736652
  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,
     convergencia  2      ==  2
     convergencia  3      ==  26
     convergencia  4      ==  4
     convergencia 17      ==  38
     convergencia 19      ==  102
     convergencia 43      ==  162
     convergencia 27      ==  202
     convergencia 58      ==  474
     convergencia 63      ==  150056
     convergencia 81      ==  150056
     convergencia 89      ==  150056
     convergencia (10^12) ==  1000101125092
  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

import Data.List               ((\\))
import Data.Char               (digitToInt)
import Graphics.Gnuplot.Simple (plotList, Attribute (Key, Title, XRange, PNG))
 
-- 1ª definición de sucLoomis
-- ==========================
 
sucLoomis :: Integer -> [Integer]
sucLoomis x = map (loomis x) [0..]
 
loomis :: Integer -> Integer -> Integer
loomis x 0 = x
loomis x n = y + productoDigitosNoNulos y
  where y = loomis x (n-1)
 
productoDigitosNoNulos :: Integer -> Integer
productoDigitosNoNulos = product . digitosNoNulos
 
digitosNoNulos :: Integer -> [Integer]
digitosNoNulos x =
  [read [c] | c <- show x, c /= '0']
 
-- 2ª definición de sucLoomis
-- ==========================
 
sucLoomis2 :: Integer -> [Integer]
sucLoomis2 = iterate siguienteLoomis 
 
siguienteLoomis :: Integer -> Integer
siguienteLoomis y = y + productoDigitosNoNulos y
 
-- 3ª definición de sucLoomis
-- ==========================
 
sucLoomis3 :: Integer -> [Integer]
sucLoomis3 =
  iterate ((+) <*> product .
           map (toInteger . digitToInt) .
           filter (/= '0') . show)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> sucLoomis 1 !! 30000
--    6571272766
--    (2.45 secs, 987,955,944 bytes)
--    λ> sucLoomis2 1 !! 30000
--    6571272766
--    (2.26 secs, 979,543,328 bytes)
--    λ> sucLoomis3 1 !! 30000
--    6571272766
--    (0.31 secs, 88,323,832 bytes)
 
-- 1ª definición de convergencia
-- =============================
 
convergencia1 :: Integer -> Integer
convergencia1 x =
  head (dropWhile noEnSucLoomisDe1 (sucLoomis x))
 
noEnSucLoomisDe1 :: Integer -> Bool
noEnSucLoomisDe1 x = not (pertenece x sucLoomisDe1)
 
sucLoomisDe1 :: [Integer]
sucLoomisDe1 = sucLoomis 1
 
pertenece :: Integer -> [Integer] -> Bool
pertenece x ys =
  x == head (dropWhile (<x) ys)
 
-- 2ª definición de convergencia
-- =============================
 
convergencia2 :: Integer -> Integer
convergencia2 = aux (sucLoomis3 1) . sucLoomis3
 where aux as@(x:xs) bs@(y:ys) | x == y    = x
                               | x < y     = aux xs bs
                               | otherwise = aux as ys
 
-- 3ª definición de convergencia
-- =============================
 
convergencia3 :: Integer -> Integer
convergencia3 = head . interseccion (sucLoomis3 1) . sucLoomis3
 
-- (interseccion xs ys) es la intersección entre las listas ordenadas xs
-- e ys. Por ejemplo,
--    λ> take 10 (interseccion (sucLoomis3 1) (sucLoomis3 2))
--    [2,4,8,16,22,26,38,62,74,102]
interseccion :: Ord a => [a] -> [a] -> [a]
interseccion = aux
  where aux as@(x:xs) bs@(y:ys) = case compare x y of
                                    LT ->     aux xs bs
                                    EQ -> x : aux xs ys
                                    GT ->     aux as ys
        aux _         _         = []                           
 
-- 4ª definición de convergencia
-- =============================
 
convergencia4 :: Integer -> Integer
convergencia4 x = perteneceA (sucLoomis3 x) 1
  where perteneceA (y:ys) n | y == c    = y
                            | otherwise = perteneceA ys c
          where c = head $ dropWhile (< y) $ sucLoomis3 n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> convergencia1 (10^4)
--    150056
--    (2.94 secs, 1,260,809,808 bytes)
--    λ> convergencia2 (10^4)
--    150056
--    (0.03 secs, 700,240 bytes)
--    λ> convergencia3 (10^4)
--    150056
--    (0.03 secs, 1,165,496 bytes)
--    λ> convergencia4 (10^4)
--    150056
--    (0.02 secs, 1,119,648 bytes)
--    
--    λ> convergencia2 (10^12)
--    1000101125092
--    (1.81 secs, 714,901,080 bytes)
--    λ> convergencia3 (10^12)
--    1000101125092
--    (1.92 secs, 744,932,184 bytes)
--    λ> convergencia4 (10^12)
--    1000101125092
--    (1.82 secs, 941,053,328 bytes)
 
-- Definición de graficaConvergencia
-- ==================================
 
graficaConvergencia :: [Integer] -> IO ()
graficaConvergencia xs =
  plotList [ Key Nothing
           , Title "Convergencia de sucesiones de Loomis"
           , XRange (fromIntegral (minimum xs),fromIntegral (maximum xs))
           , PNG "Las_sucesiones_de_Loomis_2.png"
           ]
           [(x,convergencia2 x) | x <- xs]

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

   sylvester        :: Integer -> Integer
   graficaSylvester :: Integer -> Integer -> IO ()

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,
     λ> [sylvester n | n <- [0..7]]
     [2,3,7,43,1807,3263443,10650056950807,113423713055421844361000443]
     λ> length (show (sylvester 25))
     6830085
  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

import Data.List               (genericIndex)
import Data.Array              ((!), array)
import Graphics.Gnuplot.Simple (plotList, Attribute (Key, PNG))
 
-- 1ª solución (por recursión)
-- ===========================
 
sylvester1 :: Integer -> Integer
sylvester1 0 = 2
sylvester1 n = 1 + product [sylvester1 k | k <- [0..n-1]]
 
-- 2ª solución (con programación dinámica)
-- =======================================
 
sylvester2 :: Integer -> Integer
sylvester2 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + product [v!k | k <- [0..m-1]]
 
-- 3ª solución
-- ===========
 
-- Observando que
--    S(n) = 1 + S(0)*S(1)*...*S(n-2)*S(n-1)
--         = 1 + (1 + S(0)*S(1)*...*S(n-2))*S(n-1) - S(n-1)
--         = 1 + S(n-1)*S(n-1) - S(n-1)
--         = 1 + S(n-1)^2 - S(n-1)
-- se obtiene la siguiente definición.
sylvester3 :: Integer -> Integer
sylvester3 0 = 2
sylvester3 n = 1 + x^2 - x
  where x = sylvester3 (n-1)
 
-- 4ª solución
-- ===========
 
sylvester4 :: Integer -> Integer
sylvester4 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + x^2 - x
    where x = v ! (m-1)
 
-- 5ª solución
-- ===========
 
sylvester5 :: Integer -> Integer
sylvester5 n = sucSylvester5 `genericIndex` n
 
sucSylvester5 :: [Integer]
sucSylvester5 = iterate (\x -> (x-1)*x+1) 2 
 
-- La comparación es
--    λ> length (show (sylvester1 23))
--    1707522
--    (6.03 secs, 4,090,415,704 bytes)
--    λ> length (show (sylvester2 23))
--    1707522
--    (0.33 secs, 109,477,296 bytes)
--    λ> length (show (sylvester3 23))
--    1707522
--    (0.35 secs, 109,395,136 bytes)
--    λ> length (show (sylvester4 23))
--    1707522
--    (0.33 secs, 109,402,440 bytes)
--    λ> length (show (sylvester5 23))
--    1707522
--    (0.30 secs, 108,676,256 bytes)
 
graficaSylvester :: Integer -> Integer -> IO ()
graficaSylvester d n =
  plotList [ Key Nothing
           , PNG ("La_sucesion_de_Sylvester_" ++ show (d,n) ++ ".png")
           ]
           [sylvester5 k `mod` (10^d) | k <- [0..n]]

La conjetura de Levy

Hyman Levy observó que

    7 = 3 + 2 x 2
    9 = 3 + 2 x 3 =  5 + 2 x 2
   11 = 5 + 2 x 3 =  7 + 2 x 2
   13 = 3 + 2 x 5 =  7 + 2 x 3
   15 = 3 + 2 x 5 = 11 + 2 x 2
   17 = 3 + 2 x 7 =  7 + 2 x 5 = 11 + 2 x 3 = 13 + 2 x 2
   19 = 5 + 2 x 7 = 13 + 2 x 3

y conjeturó que todos los número impares mayores o iguales que 7 se pueden escribir como la suma de un primo y el doble de un primo. El objetivo de los siguientes ejercicios es comprobar la conjetura de Levy.

Definir las siguientes funciones

   descomposicionesLevy :: Integer -> [(Integer,Integer)]
   graficaLevy          :: Integer -> IO ()

tales que

  • (descomposicionesLevy x) es la lista de pares de primos (p,q) tales que x = p + 2q. Por ejemplo,
     descomposicionesLevy  7  ==  [(3,2)]
     descomposicionesLevy  9  ==  [(3,3),(5,2)]
     descomposicionesLevy 17  ==  [(3,7),(7,5),(11,3),(13,2)]
  • (graficaLevy n) dibuja los puntos (x,y) tales que x pertenece a [7,9..7+2x(n-1)] e y es el número de descomposiciones de Levy de x. Por ejemplo, (graficaLevy 200) dibuja
    La_conjetura_de_Levy-200

Comprobar con QuickCheck la conjetura de Levy.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
descomposicionesLevy :: Integer -> [(Integer,Integer)]
descomposicionesLevy x =
  [(p,q) | p <- takeWhile (< x) (tail primes)
         , let q = (x - p) `div` 2
         , isPrime q]
 
graficaLevy :: Integer -> IO ()
graficaLevy n =
  plotList [ Key Nothing
           , XRange (7,fromIntegral (7+2*(n-1)))
           , PNG ("La_conjetura_de_Levy-" ++ show n ++ ".png")
           ]
           [(x, length (descomposicionesLevy x)) | x <- [7,9..7+2*(n-1)]] 
 
-- La propiedad es
prop_Levy :: Integer -> Bool
prop_Levy x =
  not (null (descomposicionesLevy (7 + 2 * abs x)))
 
-- La comprobación es
--    λ> quickCheck prop_Levy
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Dios creó el número natural, y todo el resto es obra del hombre.”

Leopold Kronecker

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

   a(0) = 6*(1/2)                               = 3.0
   a(1) = 6*(1/2+1/(2*3*2^3))                   = 3.125
   a(2) = 6*(1/2+1/(2*3*2^3)+(1*3)/(2*4*5*2^5)) = 3.1390625

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,
     aproximacionPi 0   ==  3.0
     aproximacionPi 1   ==  3.125
     aproximacionPi 2   ==  3.1390625
     aproximacionPi 10  ==  3.1415926468755613
     aproximacionPi 21  ==  3.141592653589793
     pi                 ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
aproximacionPi :: Int -> Double
aproximacionPi n = 6 * arcsinX
  where arcsinX = 0.5 + sum (take n factoresN)
 
factoresN :: [Double]
factoresN = zipWith (*) (potenciasK 3) fraccionesPI
 
potenciasK :: Double -> [Double]
potenciasK k = (0.5**k)/k : potenciasK (k+2)
 
fraccionesPI :: [Double]
fraccionesPI =
  scanl (*) (1/2) (tail (zipWith (/) [1,3..] [2,4..]))
 
-- 2ª definición
-- =============
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = 6 * (serie !! n)
 
serie :: [Double]
serie = scanl1 (+) (zipWith (/)
                            (map fromIntegral numeradores)
                            (map fromIntegral denominadores))
  where numeradores    = 1 : scanl1 (*) [1,3..]
        denominadores  = zipWith (*) denominadores1 denominadores2
        denominadores1 = 2 : scanl1 (*) [2,4..]
        denominadores2 = 1 : [n * 2^n | n <- [3,5..]]
 
grafica :: [Int] -> IO ()
grafica xs = 
    plotList [Key Nothing]
             [(k,aproximacionPi k) | k <- xs]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.”

Hermann Weyl.