Menu Close

Etiqueta: fromIntegral

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

   a₀ + a₁x + a₂x² + a₃x³ + ...

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

   e^x = 1 + x + x²/2! + x³/3! + ...

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

   type Serie a = [a]

Definir las siguientes funciones

   opuesta      :: Num a => Serie a -> Serie a
   suma         :: Num a => Serie a -> Serie a -> Serie a
   resta        :: Num a => Serie a -> Serie a -> Serie a
   producto     :: Num a => Serie a -> Serie a -> Serie a
   cociente     :: Fractional a => Serie a -> Serie a -> Serie a
   derivada     :: (Num a, Enum a) => Serie a -> Serie a
   integral     :: (Fractional a, Enum a) => Serie a -> Serie a
   expx         :: Serie Rational

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,
     λ> take 7 (opuesta [-6,-4..])
     [6,4,2,0,-2,-4,-6]
  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,
     λ> take 7 (suma [1,3..] [2,4..])
     [3,7,11,15,19,23,27]
  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,
     λ> take 7 (resta [3,5..] [2,4..])
     [1,1,1,1,1,1,1]
     λ> take 7 (resta ([3,7,11,15,19,23,27] ++ repeat 0) [1,3..])
     [2,4,6,8,10,12,14]
  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,
     λ> take 7 (producto [3,5..] [2,4..])
     [6,22,52,100,170,266,392]
  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,
     λ> take 7 (cociente ([6,22,52,100,170,266,392] ++ repeat 0) [3,5..])
     [2.0,4.0,6.0,8.0,10.0,12.0,14.0]
  • (derivada xs) es la derivada de la serie xs. Por ejemplo,
     λ> take 7 (derivada [2,4..])
     [4,12,24,40,60,84,112]
  • (integral xs) es la integral de la serie xs. Por ejemplo,
     λ> take 7 (integral ([4,12,24,40,60,84,112] ++ repeat 0))
     [0.0,4.0,6.0,8.0,10.0,12.0,14.0]
  • expx es la serie de la función exponencial. Por ejemplo,
     λ> take 8 expx
     [1 % 1,1 % 1,1 % 2,1 % 6,1 % 24,1 % 120,1 % 720,1 % 5040]
     λ> take 8 (derivada expx)
     [1 % 1,1 % 1,1 % 2,1 % 6,1 % 24,1 % 120,1 % 720,1 % 5040]
     λ> take 8 (integral expx)
     [0 % 1,1 % 1,1 % 2,1 % 6,1 % 24,1 % 120,1 % 720,1 % 5040]

Soluciones

type Serie a = [a] 
 
opuesta :: Num a => Serie a -> Serie a
opuesta = map negate
 
suma :: Num a => Serie a -> Serie a -> Serie a
suma = zipWith (+)
 
resta :: Num a => Serie a -> Serie a -> Serie a
resta xs ys = suma xs (opuesta ys)
 
producto :: Num a => Serie a -> Serie a -> Serie a
producto (x:xs) zs@(y:ys) = 
    x*y : suma (producto xs zs) (map (x*) ys)
 
cociente :: Fractional a => Serie a -> Serie a -> Serie a
cociente (x:xs) (y:ys) = zs 
    where zs = x/y : map (/y) (resta xs (producto zs ys))  
 
derivada :: (Num a, Enum a) => Serie a -> Serie a
derivada (_:xs) = zipWith (*) xs [1..]
 
integral :: (Fractional a, Enum a) => Serie a -> Serie a
integral xs = 0 : zipWith (/) xs [1..]
 
expx :: Serie Rational
expx = map (1/) (map fromIntegral factoriales)
 
-- factoriales es la lista de los factoriales. Por ejemplo, 
--    take 7 factoriales  ==  [1,1,2,6,24,120,720]
factoriales :: [Integer]
factoriales = 1 : scanl1 (*) [1..]

Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

   a(1) = 3+1                = 4.0
   a(2) = 3+(1/(6+9))        = 3.066666666666667
   a(3) = 3+(1/(6+9/(6+25))) = 3.158974358974359

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,
     aproximacionPi 1     ==  4.0
     aproximacionPi 2     ==  3.066666666666667
     aproximacionPi 3     ==  3.158974358974359
     aproximacionPi 10    ==  3.141287132741557
     aproximacionPi 100   ==  3.141592398533554
     aproximacionPi 1000  ==  3.1415926533392926
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Soluciones

import Graphics.Gnuplot.Simple
 
-- fraccionPi es la representación de la fracción continua de pi como un
-- par de listas infinitas.
fraccionPi :: [(Integer, Integer)]
fraccionPi = zip (3 : [6,6..]) (map (^2) [1,3..])
 
-- (aproximacionFC n fc) es la n-ésima aproximación de la fracción
-- continua fc (como un par de listas).  
aproximacionFC :: Int -> [(Integer, Integer)] -> Double
aproximacionFC n =
  foldr (\(a,b) z -> fromIntegral a + fromIntegral b / z) 1 . take n
 
aproximacionPi :: Int -> Double
aproximacionPi n =
  aproximacionFC n fraccionPi
 
grafica :: [Int] -> IO ()
grafica xs = 
  plotList [Key Nothing]
           [(k,aproximacionPi k) | k <- xs]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro “Introductio in Analysis Infinitorum” (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

  aproximacionPi :: Int -> Double
  grafica        :: Int -> IO ()

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.
     aproximacionPi 1        ==  1.0
     aproximacionPi 10       ==  2.3289682539682537
     aproximacionPi 100      ==  2.934318000847734
     aproximacionPi 1000     ==  3.0603246224585128
     aproximacionPi 10000    ==  3.1105295744825403
     aproximacionPi 100000   ==  3.134308801935256
     aproximacionPi 1000000  ==  3.1395057903490806
  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Soluciones

import Data.Numbers.Primes
import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
aproximacionPi :: Int -> Double
aproximacionPi n =
  sum [1 / fromIntegral (k * signo k) | k <- [1..n]] 
 
signoPrimo :: Int -> Int
signoPrimo 2 = 1
signoPrimo p | p `mod` 4 == 3 = 1
             | otherwise      = -1
 
signo :: Int -> Int
signo n | isPrime n = signoPrimo n
        | otherwise = product (map signoPrimo (primeFactors n))
 
-- 2ª definición
-- =============
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = serieEuler !! (n-1)
 
serieEuler :: [Double]
serieEuler =
  scanl1 (+) [1 / fromIntegral (n * signo n) | n <- [1..]]
 
-- Definición de grafica
-- =====================
 
grafica :: Int -> IO ()
grafica n = 
    plotList [Key Nothing]
             [(k,aproximacionPi2 k) | k <- [100,110..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

   digitosPi :: [Integer]
   digitosPi = g(1,0,1,1,3,3) where
     g (q,r,t,k,n,l) = 
       if 4*q+r-t < n*t
       then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
       else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)

Por ejemplo,

   λ> take 25 digitosPi
   [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3]

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

   distribucionDigitosPi :: Int -> [Int]
   frecuenciaDigitosPi   :: Int -> [Double]

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,
     λ> distribucionDigitosPi 10
     [0,2,1,2,1,2,1,0,0,1]
     λ> distribucionDigitosPi 100
     [8,8,12,12,10,8,9,8,12,13]
     λ> distribucionDigitosPi 1000
     [93,116,103,103,93,97,94,95,101,105]
     λ> distribucionDigitosPi 5000
     [466,531,496,460,508,525,513,488,492,521]
  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,
   λ> frecuenciaDigitosPi 10
   [0.0,20.0,10.0,20.0,10.0,20.0,10.0,0.0,0.0,10.0]
   λ> frecuenciaDigitosPi 100
   [8.0,8.0,12.0,12.0,10.0,8.0,9.0,8.0,12.0,13.0]
   λ> frecuenciaDigitosPi 1000
   [9.3,11.6,10.3,10.3,9.3,9.7,9.4,9.5,10.1,10.5]
   λ> frecuenciaDigitosPi 5000
   [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]

Soluciones

import Data.Array
import Data.List (group, sort)
 
digitosPi :: [Integer]
digitosPi = g(1,0,1,1,3,3) where
  g (q,r,t,k,n,l) = 
    if 4*q+r-t < n*t
    then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
    else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)
 
-- 1ª definición
-- =============
 
distribucionDigitosPi :: Int -> [Int]
distribucionDigitosPi n =
  elems (accumArray (+) 0 (0,9) [ (i,1)
                                | i <- take n digitosPi]) 
 
frecuenciaDigitosPi :: Int -> [Double]
frecuenciaDigitosPi n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi n]
  where m = fromIntegral n
 
-- 2ª definición
-- =============
 
distribucionDigitosPi2 :: Int -> [Int]
distribucionDigitosPi2 n =
  [length xs - 1 | xs <- group (sort (take n digitosPi ++ [0..9]))]
 
frecuenciaDigitosPi2 :: Int -> [Double]
frecuenciaDigitosPi2 n =
  [100 * (fromIntegral x / m) | x <- distribucionDigitosPi2 n]
  where m = fromIntegral n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> last (take 5000 digitosPi)
--    2
--    (4.47 secs, 3,927,848,448 bytes)
--    λ> frecuenciaDigitosPi 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.01 secs, 0 bytes)
--    λ> frecuenciaDigitosPi2 5000
--    [9.32,10.62,9.92,9.2,10.16,10.5,10.26,9.76,9.84,10.42]
--    (0.02 secs, 0 bytes)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

   aproximaPiGL     :: Int -> Double
   aproximaPiBeeler :: Int -> Double
   graficas         :: [Int] -> IO ()

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,
     aproximaPiGL 1       ==  4.0
     aproximaPiGL 2       ==  2.666666666666667
     aproximaPiGL 3       ==  3.466666666666667
     aproximaPiGL 10      ==  3.0418396189294032
     aproximaPiGL 100     ==  3.1315929035585537
     aproximaPiGL 1000    ==  3.140592653839794
     aproximaPiGL 10000   ==  3.1414926535900345
     aproximaPiGL 100000  ==  3.1415826535897198
  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,
     aproximaPiBeeler 1   ==  2.0
     aproximaPiBeeler 2   ==  2.6666666666666665
     aproximaPiBeeler 3   ==  2.933333333333333
     aproximaPiBeeler 10  ==  3.140578169680337
     aproximaPiBeeler 60  ==  3.141592653589793
     pi                   ==  3.141592653589793
  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

import Graphics.Gnuplot.Simple
 
-- Definiciones de aproximaPiGL
-- ============================
 
-- 1ª definición de aproximaPiGL
aproximaPiGL :: Int -> Double
aproximaPiGL n = 4 * (sum . take n . sumaA . zipWith (/) [1,1..]) [1,3..]
  where sumaA (x:y:xs) = x:(-y):sumaA xs
 
-- 2ª definición de aproximaPiGL
aproximaPiGL2 :: Int -> Double
aproximaPiGL2 n =
  4 * (sum (take n (zipWith (/) (cycle [1,-1]) [1,3..])))
 
-- 3ª definición de aproximaPiGL
aproximaPiGL3 :: Int -> Double
aproximaPiGL3 n =
  4 * (sum . take n . zipWith (/) (cycle [1,-1])) [1,3..]
 
-- 4ª definición de aproximaPiGL
aproximaPiGL4 :: Int -> Double
aproximaPiGL4 n = serieGL !! (n-1)
 
serieGL :: [Double]
serieGL = scanl1 (+) (zipWith (/) numeradores denominadores)
  where numeradores   = cycle [4,-4]
        denominadores = [1,3..]
 
-- Definición de aproximaPiBeeler
aproximaPiBeeler :: Int -> Double
aproximaPiBeeler n = 2 * aux (fromIntegral n) 1
  where
    aux :: Double -> Double -> Double 
    aux n k | n == k    = 1
            | otherwise = 1 + (k/(2*k+1)) * aux n (1+k)
 
-- Definición de graficas
graficas :: [Int] -> IO ()
graficas xs = 
    plotLists [Key Nothing]
             [[(k,aproximaPiGL k)     | k <- xs],
              [(k,aproximaPiBeeler k) | k <- xs]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

   a(0) = 6*(1/2)                               = 3.0
   a(1) = 6*(1/2+1/(2*3*2^3))                   = 3.125
   a(2) = 6*(1/2+1/(2*3*2^3)+(1*3)/(2*4*5*2^5)) = 3.1390625

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,
     aproximacionPi 0   ==  3.0
     aproximacionPi 1   ==  3.125
     aproximacionPi 2   ==  3.1390625
     aproximacionPi 10  ==  3.1415926468755613
     aproximacionPi 21  ==  3.141592653589793
     pi                 ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
aproximacionPi :: Int -> Double
aproximacionPi n = 6 * arcsinX
  where arcsinX = 0.5 + sum (take n factoresN)
 
factoresN :: [Double]
factoresN = zipWith (*) (potenciasK 3) fraccionesPI
 
potenciasK :: Double -> [Double]
potenciasK k = (0.5**k)/k : potenciasK (k+2)
 
fraccionesPI :: [Double]
fraccionesPI =
  scanl (*) (1/2) (tail (zipWith (/) [1,3..] [2,4..]))
 
-- 2ª definición
-- =============
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = 6 * (serie !! n)
 
serie :: [Double]
serie = scanl1 (+) (zipWith (/)
                            (map fromIntegral numeradores)
                            (map fromIntegral denominadores))
  where numeradores    = 1 : scanl1 (*) [1,3..]
        denominadores  = zipWith (*) denominadores1 denominadores2
        denominadores1 = 2 : scanl1 (*) [2,4..]
        denominadores2 = 1 : [n * 2^n | n <- [3,5..]]
 
grafica :: [Int] -> IO ()
grafica xs = 
    plotList [Key Nothing]
             [(k,aproximacionPi k) | k <- xs]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.”

Hermann Weyl.

Medias de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

   3.1415926535897932384626433832 ... 83996346460422090106105779458151

Definir las funciones

   mediasDigitosDePi        :: IO [Double]
   graficaMediasDigitosDePi :: Int -> IO ()

tales que

  • mediasDigitosDePi es la sucesión cuyo n-ésimo elemento es la media de los n primeros dígitos de pi. Por ejemplo,
     λ> xs <- mediasDigitosDePi
     λ> take 5 xs
     [1.0,2.5,2.0,2.75,4.0]
     λ> take 10 xs
     [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
     λ> take 10 <$> mediasDigitosDePi
     [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
  • (graficaMediasDigitosDePi n) dibuja la gráfica de los n primeros términos de mediasDigitosDePi. Por ejemplo,
    • (graficaMediasDigitosDePi 20) dibuja
    • (graficaMediasDigitosDePi 200) dibuja
    • (graficaMediasDigitosDePi 2000) dibuja

Soluciones

import Data.Char (digitToInt)
import Data.List (genericLength, inits, tails)
import Graphics.Gnuplot.Simple ( Attribute (Key, PNG)
                               , plotList )
 
-- Definición de mediasDigitosDePi
-- ===============================
 
mediasDigitosDePi :: IO [Double]
mediasDigitosDePi = do
  (_:_:ds) <- readFile "Digitos_de_pi.txt"
  return (medias (digitos ds))
 
-- (digitos cs) es la lista de los digitos de cs. Por ejempplo,
--    digitos "1415926535"  ==  [1,4,1,5,9,2,6,5,3,5]
digitos :: String -> [Int]
digitos = map digitToInt
 
-- (medias xs) es la lista de las medias de los segmentos iniciales de
-- xs. Por ejemplo,
--    λ> medias [1,4,1,5,9,2,6,5,3,5]
--    [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
medias :: [Int] -> [Double]
medias xs = map media (tail (inits xs))
 
-- (media xs) es la media aritmética de xs. Por ejemplo,
--    media [1,4,1,5,9]  ==  4.0
media :: [Int] -> Double
media xs = fromIntegral (sum xs) / genericLength xs
 
-- Definición de graficaMediasDigitosDePi
-- ======================================
 
graficaMediasDigitosDePi :: Int -> IO ()
graficaMediasDigitosDePi n = do
  xs <- mediasDigitosDePi
  plotList [ Key Nothing
           , PNG ("Medias_de_digitos_de_pi_" ++ show n ++ ".png")
           ]
           (take n xs)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

Es el mejor de los buenos
quien sabe que en esta vida
todo es cuestión de medida:
un poco más, algo menos.

Antonio Machado

Distancia esperada entre dos puntos de un cuadrado unitario

Definir, por simulación, la función

   distanciaEsperada :: Int -> IO Double

tal que (distanciaEsperada n) es la distancia esperada entre n puntos del cuadrado unitario de vértices opuestos (0,0) y (1,1), elegidos aleatoriamente. Por ejemplo,

   distanciaEsperada 10     ==  0.43903617921423593
   distanciaEsperada 10     ==  0.6342350621260004
   distanciaEsperada 100    ==  0.5180418995364429
   distanciaEsperada 100    ==  0.5288261085653962
   distanciaEsperada 1000   ==  0.5143804432569616
   distanciaEsperada 10000  ==  0.5208360147922616

El valor exacto de la distancia esperada es

   ve = (sqrt(2) + 2 + 5*log(1+sqrt(2)))/15 = 0.5214054331647207

Definir la función

   graficaDistanciaEsperada :: [Int] -> IO ()

tal que (graficaDistanciaEsperadan n) dibuja las gráficas de los pares (n, distanciaEsperada n) para n en la lista creciente ns junto con la recta y = ve, donde ve es el valor exacto. Por ejemplo, (graficaDistanciaEsperada [10,30..4000]) dibuja

Soluciones

import Data.List     (genericLength)
import System.Random (newStdGen, randomRIO, randomRs)
import Control.Monad (replicateM)
import Graphics.Gnuplot.Simple
 
-- 1ª solución
-- ===========
 
-- Un punto es un par de números reales.
type Punto = (Double, Double)
 
-- (puntosDelCuadrado n) es una lista de n puntos del cuadrado
-- unitario de vértices opuestos (0,0) y (1,1). Por ejemplo, 
--    λ> puntosDelCuadrado 3
--    [(0.6067427807212623,0.24785843546479303),
--     (0.9579158098726746,8.047408846191773e-2),
--     (0.856758357789639,0.9814972717003113)]
--    λ> puntosDelCuadrado 3
--    [(1.9785720974027532e-2,0.6343219201012211),
--     (0.21903717179861604,0.20947986189590784),
--     (0.4739903340716357,1.2262474491489095e-2)]
puntosDelCuadrado :: Int -> IO [Punto]
puntosDelCuadrado n = do
  gen <- newStdGen
  let xs = randomRs (0,1) gen
      (as, ys) = splitAt n xs
      (bs, _)  = splitAt n ys
  return (zip as bs)
 
-- (distancia p1 p2) es la distancia entre los puntos p1 y p2. Por
-- ejemplo,
--    distancia (0,0) (3,4)  ==  5.0
distancia :: Punto -> Punto -> Double
distancia (x1,y1) (x2,y2) = sqrt ((x1-x2)^2+(y1-y2)^2)
 
-- (distancias ps) es la lista de las distancias entre los elementos 1º
-- y 2º, 3º y 4º, ... de ps. Por ejemplo,
--    distancias [(0,0),(3,4),(1,1),(7,9)]  ==  [5.0,10.0]
distancias :: [Punto] -> [Double]
distancias []         = []
distancias (p1:p2:ps) = distancia p1 p2 : distancias ps
 
-- (media xs) es la media aritmética de los elementos de xs. Por ejemplo,
--    media [1,7,1]  ==  3.0
media :: [Double] -> Double
media xs =
  sum xs / genericLength xs
 
-- (distanciaEsperada n) es la distancia esperada entre n puntos
-- aleatorios en el cuadrado unitario. Por ejemplo,
distanciaEsperada :: Int -> IO Double
distanciaEsperada n = do
  ps <- puntosDelCuadrado (2*n)
  return (media (distancias ps))
 
-- 2ª solución
-- ===========
 
distanciaEsperada2 :: Int -> IO Double
distanciaEsperada2 n = do
  ps <- puntosDelCuadrado2 (2*n)
  return (media (distancias ps))
 
-- (puntosDelCuadrado2 n) es una lista de n puntos del cuadrado
-- unitario de vértices opuestos (0,0) y (1,1). Por ejemplo, 
--    λ> puntosDelCuadrado2 3
--    [(0.9836699352638695,0.5143414844876929),
--     (0.8715237339877027,0.9905157772823782),
--     (0.29502946161912935,0.16889248111565192)]
--    λ> puntosDelCuadrado2 3
--    [(0.20405570457106392,0.47574116941605116),
--     (0.7128182811364226,3.201419787777959e-2),
--     (0.5576891231675457,0.9994474730919443)]
puntosDelCuadrado2 :: Int -> IO [Punto]
puntosDelCuadrado2 n =
  replicateM n puntoDelCuadrado2
 
-- (puntoDelCuadrado2 n) es un punto del cuadrado unitario de vértices
-- opuestos (0,0) y (1,1). Por ejemplo,  
--    λ> puntoDelCuadrado2
--    (0.7512991739803923,0.966436016138578)
--    λ> puntoDelCuadrado2
--    (0.7306826194847795,0.8984574498515252)
puntoDelCuadrado2 :: IO Punto
puntoDelCuadrado2 = do
  x <- randomRIO (0, 1.0)
  y <- randomRIO (0, 1.0)
  return (x, y)
 
-- 3ª solución
-- ===========
 
distanciaEsperada3 :: Int -> IO Double
distanciaEsperada3 n = do
  ds <- distanciasAleatorias n
  return (media ds)
 
-- (distanciasAleatorias n) es la lista de las distancias aleatorias
-- entre n pares de puntos del cuadrado unitario. Por ejemplo, 
--    λ> distanciasAleatorias 3
--    [0.8325589110989705,0.6803336613847881,0.1690051224111662]
--    λ> distanciasAleatorias 3
--    [0.3470124940889039,0.459002678562019,0.7665623634969365]
distanciasAleatorias :: Int -> IO [Double]
distanciasAleatorias n = 
  replicateM n distanciaAleatoria
 
-- distanciaAleatoria es la distancia de un par de punto del cuadrado
-- unitario elegidos aleatoriamente. Por ejemplo,
--    λ> distanciaAleatoria
--    0.8982361685460913
--    λ> distanciaAleatoria
--    0.9777207485571939
--    λ> distanciaAleatoria
--    0.6042223512347842
distanciaAleatoria :: IO Double
distanciaAleatoria = do 
  p1 <- puntoDelCuadrado2
  p2 <- puntoDelCuadrado2
  return (distancia p1 p2)
 
-- 4ª solución
-- ===========
 
distanciaEsperada4 :: Int -> IO Double
distanciaEsperada4 n =
  media <$> distanciasAleatorias n
 
-- Gráfica
-- =======
 
graficaDistanciaEsperada :: [Int] -> IO ()
graficaDistanciaEsperada ns = do
  ys <- mapM distanciaEsperada ns
  let e = (sqrt(2) + 2 + 5*log(1+sqrt(2)))/15
  plotLists [ Key Nothing
            -- , PNG "Distancia_esperada_entre_dos_puntos.png"
            ]
            [ zip ns ys
            , zip ns (repeat e)]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“El matemático no estudia las matemáticas puras porque sean útiles; las estudia porque se deleita en ellas y se deleita en ellas porque son hermosas.”

Henri Poincaré.

Pandemia

¡El mundo está en cuarentena! Hay una nueva pandemia que lucha contra la humanidad. Cada continente está aislado de los demás, pero las personas infectadas se han propagado antes de la advertencia.

En este problema se representará el mundo por una cadena como la siguiente

   "01000000X000X011X0X"

donde 0 representa no infectado, 1 representa infectado y X representa un océano

Las reglas de propagación son:

  • El virus no puede propagarse al otro lado de un océano.
  • Si una persona se infecta, todas las personas de este continente se infectan también.
  • El primer y el último continente no están conectados.

El problema consiste en encontrar el porcentaje de la población humana que se infectó al final. Por ejemplo,

   inicio:     "01000000X000X011X0X"
   final:      "11111111X000X111X0X"
   total:      15
   infectados: 11
   porcentaje: 100*11/15 = 73.33333333333333

Definir la función

   porcentajeInfectados :: String -> Double

tal que (porcentajeInfectados xs) es el porcentaje final de infectados para el mapa inicial xs. Por ejemplo,

   porcentajeInfectados "01000000X000X011X0X"  == 73.33333333333333
   porcentajeInfectados "01X000X010X011XX"     == 72.72727272727273
   porcentajeInfectados "XXXXX"                == 0.0
   porcentajeInfectados "0000000010"           == 100.0
   porcentajeInfectados "X00X000000X10X0100"   == 42.857142857142854

Soluciones

import Data.List (genericLength)
import Data.List.Split (splitOn)
 
-- 1ª solución
-- ===========
 
porcentajeInfectados :: String -> Double
porcentajeInfectados xs
  | nh == 0   = 0
  | otherwise = 100 * ni / nh
  where ni = fromIntegral (numeroInfectados xs)
        nh = fromIntegral (numeroHabitantes xs)
 
-- (continentes xs) es la lista de las poblaciones de los continentes
-- del mapa xs. Por ejemplo,
--    continentes "01000000X000X011X0X" == ["01000000","000","011","0"]
--    continentes "01X000X010X011XX"    == ["01","000","010","011"]
--    continentes "XXXXX"               == [""]
--    continentes "0000000010"          == ["0000000010"]
--    continentes "X00X000000X10X0100"  == ["","00","000000","10","0100"]
continentes :: String -> [String]
continentes [] = []
continentes xs = as : continentes (dropWhile (=='X') bs)
  where (as,bs) = break (=='X') xs
 
-- (numeroInfectados xs) es el número final de infectados a partir del
-- mapa xs. Por ejemplo,
--    numeroInfectados "01000000X000X011X0X"  ==  11
numeroInfectados :: String -> Int
numeroInfectados xs =
  sum [length ys | ys <- continentes xs
                 , '1' `elem` ys]
 
-- (numeroHabitantes xs) es el número final de habitantes del mapa
-- xs. Por ejemplo, 
--    numeroHabitantes "01000000X000X011X0X"  ==  15
numeroHabitantes :: String -> Int
numeroHabitantes xs = length (filter (/='X') xs)
 
-- 2ª solución
-- ===========
 
porcentajeInfectados2 :: String -> Double
porcentajeInfectados2 xs
  | nh == 0   = 0
  | otherwise = 100 * ni / nh
  where ni = sum [genericLength ys | ys <- splitOn "X" xs, '1' `elem` ys]
        nh = genericLength (filter (/='X') xs)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“El avance de las matemáticas puede ser visto como un progreso de lo infinito a lo finito.”

Gian-Carlo Rota.

La menos conocida de las conjeturas de Goldbach

Goldbach, el de la famosa conjetura, hizo por lo menos otra conjetura que finalmente resultó ser falsa.

Esta última decía que todo número compuesto impar puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Así por ejemplo,

    9 =  7 + 2×1^2
   15 =  7 + 2×2^2
   21 =  3 + 2×3^2
   25 =  7 + 2×3^2
   27 = 19 + 2×2^2
   33 = 31 + 2×1^2

Definir las sucesiones

   imparesCompuestos :: [Integer]
   descomposiciones :: Integer -> [(Integer,Integer)]
   contraejemplosGoldbach :: [Integer]

tales que

  • imparesCompuestos es la lista de los números impares compuestos. Por ejemplo,
     take 9 imparesCompuestos  ==  [9,15,21,25,27,33,35,39,45]
  • (descomposiciones n) es la lista de las descomposiciones de n de n como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,
     descomposiciones 9     ==  [(7,1)]
     descomposiciones 21    ==  [(3,9),(13,4),(19,1)]
     descomposiciones 5777  ==  []

Las 3 descomposiciones de 21 son

     21 =  3 + 2*9 = 21 + 2*3^2
     21 = 13 + 2*4 = 13 + 2*3^2
     21 = 19 + 2*1 = 19 + 2*1^2
  • contraejemplosGoldbach es la lista de los contraejemplos de la anterior conjetura de Goldbach; es decir, los números impares compuestos que no pueden expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,
   take 2 contraejemplosGoldbach  ==  [5777,5993]

Comprobar con QuickCheck que la conjetura de Golbach se verifica a partir de 5993; es decir, todo número compuesto impar mayor que 5993 puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado.

Nota: Basado en el artículo La menos conocida de las conjeturas de Goldbach de Claudio Meller en el blog Números y algo más.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
 
imparesCompuestos :: [Integer]
imparesCompuestos = filter esCompuesto [3,5..]
 
-- (esCompuesto x) se verifica si x es un número compuesto. Por ejemplo,
--    esCompuesto 6  ==  True
--    esCompuesto 7  ==  False
esCompuesto :: Integer -> Bool
esCompuesto = not . isPrime
 
contraejemplosGoldbach :: [Integer]
contraejemplosGoldbach = filter esContraejemplo imparesCompuestos
 
-- (esContraejemplo x) es verifica si el número impar compuesto x es un
-- contraejemplo de la conjetura de Goldbach. Por ejemplo,
--    esContraejemplo 5777  ==  True
--    esContraejemplo 15    ==  False
esContraejemplo :: Integer -> Bool
esContraejemplo = null . descomposiciones
 
descomposiciones :: Integer -> [(Integer,Integer)]
descomposiciones n =
  [(p,x) | p <- takeWhile (<=n) primes
         , (n - p) `mod` 2 == 0
         , let x = (n - p) `div` 2
         , esCuadrado x]
 
-- (esCuadrado x) es verifica si x es un cuadrado perfecto. Por ejemplo, 
--    esCuadrado 16  ==  True
--    esCuadrado 27  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x = y^2 == x
  where y = ceiling (sqrt (fromIntegral x))
 
-- La propiedad es
prop_conjetura :: Int -> Property
prop_conjetura n =
  n >= 0 ==> not (esContraejemplo (imparesCompuestosMayore5993 !! n))
  where imparesCompuestosMayore5993 = dropWhile (<=5993) imparesCompuestos
 
-- La comprobación es
--    λ> quickCheck prop_conjetura
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Obvio es la palabra más peligrosa de las matemáticas.”

Eric Temple Bell