Menu Close

Etiqueta: fromIntegral

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

   a(0) = 6*(1/2)                               = 3.0
   a(1) = 6*(1/2+1/(2*3*2^3))                   = 3.125
   a(2) = 6*(1/2+1/(2*3*2^3)+(1*3)/(2*4*5*2^5)) = 3.1390625

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,
     aproximacionPi 0   ==  3.0
     aproximacionPi 1   ==  3.125
     aproximacionPi 2   ==  3.1390625
     aproximacionPi 10  ==  3.1415926468755613
     aproximacionPi 21  ==  3.141592653589793
     pi                 ==  3.141592653589793
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
aproximacionPi :: Int -> Double
aproximacionPi n = 6 * arcsinX
  where arcsinX = 0.5 + sum (take n factoresN)
 
factoresN :: [Double]
factoresN = zipWith (*) (potenciasK 3) fraccionesPI
 
potenciasK :: Double -> [Double]
potenciasK k = (0.5**k)/k : potenciasK (k+2)
 
fraccionesPI :: [Double]
fraccionesPI =
  scanl (*) (1/2) (tail (zipWith (/) [1,3..] [2,4..]))
 
-- 2ª definición
-- =============
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = 6 * (serie !! n)
 
serie :: [Double]
serie = scanl1 (+) (zipWith (/)
                            (map fromIntegral numeradores)
                            (map fromIntegral denominadores))
  where numeradores    = 1 : scanl1 (*) [1,3..]
        denominadores  = zipWith (*) denominadores1 denominadores2
        denominadores1 = 2 : scanl1 (*) [2,4..]
        denominadores2 = 1 : [n * 2^n | n <- [3,5..]]
 
grafica :: [Int] -> IO ()
grafica xs = 
    plotList [Key Nothing]
             [(k,aproximacionPi k) | k <- xs]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.”

Hermann Weyl.

Medias de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

   3.1415926535897932384626433832 ... 83996346460422090106105779458151

Definir las funciones

   mediasDigitosDePi        :: IO [Double]
   graficaMediasDigitosDePi :: Int -> IO ()

tales que

  • mediasDigitosDePi es la sucesión cuyo n-ésimo elemento es la media de los n primeros dígitos de pi. Por ejemplo,
     λ> xs <- mediasDigitosDePi
     λ> take 5 xs
     [1.0,2.5,2.0,2.75,4.0]
     λ> take 10 xs
     [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
     λ> take 10 <$> mediasDigitosDePi
     [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
  • (graficaMediasDigitosDePi n) dibuja la gráfica de los n primeros términos de mediasDigitosDePi. Por ejemplo,
    • (graficaMediasDigitosDePi 20) dibuja
    • (graficaMediasDigitosDePi 200) dibuja
    • (graficaMediasDigitosDePi 2000) dibuja

Soluciones

import Data.Char (digitToInt)
import Data.List (genericLength, inits, tails)
import Graphics.Gnuplot.Simple ( Attribute (Key, PNG)
                               , plotList )
 
-- Definición de mediasDigitosDePi
-- ===============================
 
mediasDigitosDePi :: IO [Double]
mediasDigitosDePi = do
  (_:_:ds) <- readFile "Digitos_de_pi.txt"
  return (medias (digitos ds))
 
-- (digitos cs) es la lista de los digitos de cs. Por ejempplo,
--    digitos "1415926535"  ==  [1,4,1,5,9,2,6,5,3,5]
digitos :: String -> [Int]
digitos = map digitToInt
 
-- (medias xs) es la lista de las medias de los segmentos iniciales de
-- xs. Por ejemplo,
--    λ> medias [1,4,1,5,9,2,6,5,3,5]
--    [1.0,2.5,2.0,2.75,4.0,3.6666666666666665,4.0,4.125,4.0,4.1]
medias :: [Int] -> [Double]
medias xs = map media (tail (inits xs))
 
-- (media xs) es la media aritmética de xs. Por ejemplo,
--    media [1,4,1,5,9]  ==  4.0
media :: [Int] -> Double
media xs = fromIntegral (sum xs) / genericLength xs
 
-- Definición de graficaMediasDigitosDePi
-- ======================================
 
graficaMediasDigitosDePi :: Int -> IO ()
graficaMediasDigitosDePi n = do
  xs <- mediasDigitosDePi
  plotList [ Key Nothing
           , PNG ("Medias_de_digitos_de_pi_" ++ show n ++ ".png")
           ]
           (take n xs)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

Es el mejor de los buenos
quien sabe que en esta vida
todo es cuestión de medida:
un poco más, algo menos.

Antonio Machado

Distancia esperada entre dos puntos de un cuadrado unitario

Definir, por simulación, la función

   distanciaEsperada :: Int -> IO Double

tal que (distanciaEsperada n) es la distancia esperada entre n puntos del cuadrado unitario de vértices opuestos (0,0) y (1,1), elegidos aleatoriamente. Por ejemplo,

   distanciaEsperada 10     ==  0.43903617921423593
   distanciaEsperada 10     ==  0.6342350621260004
   distanciaEsperada 100    ==  0.5180418995364429
   distanciaEsperada 100    ==  0.5288261085653962
   distanciaEsperada 1000   ==  0.5143804432569616
   distanciaEsperada 10000  ==  0.5208360147922616

El valor exacto de la distancia esperada es

   ve = (sqrt(2) + 2 + 5*log(1+sqrt(2)))/15 = 0.5214054331647207

Definir la función

   graficaDistanciaEsperada :: [Int] -> IO ()

tal que (graficaDistanciaEsperadan n) dibuja las gráficas de los pares (n, distanciaEsperada n) para n en la lista creciente ns junto con la recta y = ve, donde ve es el valor exacto. Por ejemplo, (graficaDistanciaEsperada [10,30..4000]) dibuja

Soluciones

import Data.List     (genericLength)
import System.Random (newStdGen, randomRIO, randomRs)
import Control.Monad (replicateM)
import Graphics.Gnuplot.Simple
 
-- 1ª solución
-- ===========
 
-- Un punto es un par de números reales.
type Punto = (Double, Double)
 
-- (puntosDelCuadrado n) es una lista de n puntos del cuadrado
-- unitario de vértices opuestos (0,0) y (1,1). Por ejemplo, 
--    λ> puntosDelCuadrado 3
--    [(0.6067427807212623,0.24785843546479303),
--     (0.9579158098726746,8.047408846191773e-2),
--     (0.856758357789639,0.9814972717003113)]
--    λ> puntosDelCuadrado 3
--    [(1.9785720974027532e-2,0.6343219201012211),
--     (0.21903717179861604,0.20947986189590784),
--     (0.4739903340716357,1.2262474491489095e-2)]
puntosDelCuadrado :: Int -> IO [Punto]
puntosDelCuadrado n = do
  gen <- newStdGen
  let xs = randomRs (0,1) gen
      (as, ys) = splitAt n xs
      (bs, _)  = splitAt n ys
  return (zip as bs)
 
-- (distancia p1 p2) es la distancia entre los puntos p1 y p2. Por
-- ejemplo,
--    distancia (0,0) (3,4)  ==  5.0
distancia :: Punto -> Punto -> Double
distancia (x1,y1) (x2,y2) = sqrt ((x1-x2)^2+(y1-y2)^2)
 
-- (distancias ps) es la lista de las distancias entre los elementos 1º
-- y 2º, 3º y 4º, ... de ps. Por ejemplo,
--    distancias [(0,0),(3,4),(1,1),(7,9)]  ==  [5.0,10.0]
distancias :: [Punto] -> [Double]
distancias []         = []
distancias (p1:p2:ps) = distancia p1 p2 : distancias ps
 
-- (media xs) es la media aritmética de los elementos de xs. Por ejemplo,
--    media [1,7,1]  ==  3.0
media :: [Double] -> Double
media xs =
  sum xs / genericLength xs
 
-- (distanciaEsperada n) es la distancia esperada entre n puntos
-- aleatorios en el cuadrado unitario. Por ejemplo,
distanciaEsperada :: Int -> IO Double
distanciaEsperada n = do
  ps <- puntosDelCuadrado (2*n)
  return (media (distancias ps))
 
-- 2ª solución
-- ===========
 
distanciaEsperada2 :: Int -> IO Double
distanciaEsperada2 n = do
  ps <- puntosDelCuadrado2 (2*n)
  return (media (distancias ps))
 
-- (puntosDelCuadrado2 n) es una lista de n puntos del cuadrado
-- unitario de vértices opuestos (0,0) y (1,1). Por ejemplo, 
--    λ> puntosDelCuadrado2 3
--    [(0.9836699352638695,0.5143414844876929),
--     (0.8715237339877027,0.9905157772823782),
--     (0.29502946161912935,0.16889248111565192)]
--    λ> puntosDelCuadrado2 3
--    [(0.20405570457106392,0.47574116941605116),
--     (0.7128182811364226,3.201419787777959e-2),
--     (0.5576891231675457,0.9994474730919443)]
puntosDelCuadrado2 :: Int -> IO [Punto]
puntosDelCuadrado2 n =
  replicateM n puntoDelCuadrado2
 
-- (puntoDelCuadrado2 n) es un punto del cuadrado unitario de vértices
-- opuestos (0,0) y (1,1). Por ejemplo,  
--    λ> puntoDelCuadrado2
--    (0.7512991739803923,0.966436016138578)
--    λ> puntoDelCuadrado2
--    (0.7306826194847795,0.8984574498515252)
puntoDelCuadrado2 :: IO Punto
puntoDelCuadrado2 = do
  x <- randomRIO (0, 1.0)
  y <- randomRIO (0, 1.0)
  return (x, y)
 
-- 3ª solución
-- ===========
 
distanciaEsperada3 :: Int -> IO Double
distanciaEsperada3 n = do
  ds <- distanciasAleatorias n
  return (media ds)
 
-- (distanciasAleatorias n) es la lista de las distancias aleatorias
-- entre n pares de puntos del cuadrado unitario. Por ejemplo, 
--    λ> distanciasAleatorias 3
--    [0.8325589110989705,0.6803336613847881,0.1690051224111662]
--    λ> distanciasAleatorias 3
--    [0.3470124940889039,0.459002678562019,0.7665623634969365]
distanciasAleatorias :: Int -> IO [Double]
distanciasAleatorias n = 
  replicateM n distanciaAleatoria
 
-- distanciaAleatoria es la distancia de un par de punto del cuadrado
-- unitario elegidos aleatoriamente. Por ejemplo,
--    λ> distanciaAleatoria
--    0.8982361685460913
--    λ> distanciaAleatoria
--    0.9777207485571939
--    λ> distanciaAleatoria
--    0.6042223512347842
distanciaAleatoria :: IO Double
distanciaAleatoria = do 
  p1 <- puntoDelCuadrado2
  p2 <- puntoDelCuadrado2
  return (distancia p1 p2)
 
-- 4ª solución
-- ===========
 
distanciaEsperada4 :: Int -> IO Double
distanciaEsperada4 n =
  media <$> distanciasAleatorias n
 
-- Gráfica
-- =======
 
graficaDistanciaEsperada :: [Int] -> IO ()
graficaDistanciaEsperada ns = do
  ys <- mapM distanciaEsperada ns
  let e = (sqrt(2) + 2 + 5*log(1+sqrt(2)))/15
  plotLists [ Key Nothing
            -- , PNG "Distancia_esperada_entre_dos_puntos.png"
            ]
            [ zip ns ys
            , zip ns (repeat e)]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“El matemático no estudia las matemáticas puras porque sean útiles; las estudia porque se deleita en ellas y se deleita en ellas porque son hermosas.”

Henri Poincaré.

Pandemia

¡El mundo está en cuarentena! Hay una nueva pandemia que lucha contra la humanidad. Cada continente está aislado de los demás, pero las personas infectadas se han propagado antes de la advertencia.

En este problema se representará el mundo por una cadena como la siguiente

   "01000000X000X011X0X"

donde 0 representa no infectado, 1 representa infectado y X representa un océano

Las reglas de propagación son:

  • El virus no puede propagarse al otro lado de un océano.
  • Si una persona se infecta, todas las personas de este continente se infectan también.
  • El primer y el último continente no están conectados.

El problema consiste en encontrar el porcentaje de la población humana que se infectó al final. Por ejemplo,

   inicio:     "01000000X000X011X0X"
   final:      "11111111X000X111X0X"
   total:      15
   infectados: 11
   porcentaje: 100*11/15 = 73.33333333333333

Definir la función

   porcentajeInfectados :: String -> Double

tal que (porcentajeInfectados xs) es el porcentaje final de infectados para el mapa inicial xs. Por ejemplo,

   porcentajeInfectados "01000000X000X011X0X"  == 73.33333333333333
   porcentajeInfectados "01X000X010X011XX"     == 72.72727272727273
   porcentajeInfectados "XXXXX"                == 0.0
   porcentajeInfectados "0000000010"           == 100.0
   porcentajeInfectados "X00X000000X10X0100"   == 42.857142857142854

Soluciones

import Data.List (genericLength)
import Data.List.Split (splitOn)
 
-- 1ª solución
-- ===========
 
porcentajeInfectados :: String -> Double
porcentajeInfectados xs
  | nh == 0   = 0
  | otherwise = 100 * ni / nh
  where ni = fromIntegral (numeroInfectados xs)
        nh = fromIntegral (numeroHabitantes xs)
 
-- (continentes xs) es la lista de las poblaciones de los continentes
-- del mapa xs. Por ejemplo,
--    continentes "01000000X000X011X0X" == ["01000000","000","011","0"]
--    continentes "01X000X010X011XX"    == ["01","000","010","011"]
--    continentes "XXXXX"               == [""]
--    continentes "0000000010"          == ["0000000010"]
--    continentes "X00X000000X10X0100"  == ["","00","000000","10","0100"]
continentes :: String -> [String]
continentes [] = []
continentes xs = as : continentes (dropWhile (=='X') bs)
  where (as,bs) = break (=='X') xs
 
-- (numeroInfectados xs) es el número final de infectados a partir del
-- mapa xs. Por ejemplo,
--    numeroInfectados "01000000X000X011X0X"  ==  11
numeroInfectados :: String -> Int
numeroInfectados xs =
  sum [length ys | ys <- continentes xs
                 , '1' `elem` ys]
 
-- (numeroHabitantes xs) es el número final de habitantes del mapa
-- xs. Por ejemplo, 
--    numeroHabitantes "01000000X000X011X0X"  ==  15
numeroHabitantes :: String -> Int
numeroHabitantes xs = length (filter (/='X') xs)
 
-- 2ª solución
-- ===========
 
porcentajeInfectados2 :: String -> Double
porcentajeInfectados2 xs
  | nh == 0   = 0
  | otherwise = 100 * ni / nh
  where ni = sum [genericLength ys | ys <- splitOn "X" xs, '1' `elem` ys]
        nh = genericLength (filter (/='X') xs)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“El avance de las matemáticas puede ser visto como un progreso de lo infinito a lo finito.”

Gian-Carlo Rota.

La menos conocida de las conjeturas de Goldbach

Goldbach, el de la famosa conjetura, hizo por lo menos otra conjetura que finalmente resultó ser falsa.

Esta última decía que todo número compuesto impar puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Así por ejemplo,

    9 =  7 + 2×1^2
   15 =  7 + 2×2^2
   21 =  3 + 2×3^2
   25 =  7 + 2×3^2
   27 = 19 + 2×2^2
   33 = 31 + 2×1^2

Definir las sucesiones

   imparesCompuestos :: [Integer]
   descomposiciones :: Integer -> [(Integer,Integer)]
   contraejemplosGoldbach :: [Integer]

tales que

  • imparesCompuestos es la lista de los números impares compuestos. Por ejemplo,
     take 9 imparesCompuestos  ==  [9,15,21,25,27,33,35,39,45]
  • (descomposiciones n) es la lista de las descomposiciones de n de n como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,
     descomposiciones 9     ==  [(7,1)]
     descomposiciones 21    ==  [(3,9),(13,4),(19,1)]
     descomposiciones 5777  ==  []

Las 3 descomposiciones de 21 son

     21 =  3 + 2*9 = 21 + 2*3^2
     21 = 13 + 2*4 = 13 + 2*3^2
     21 = 19 + 2*1 = 19 + 2*1^2
  • contraejemplosGoldbach es la lista de los contraejemplos de la anterior conjetura de Goldbach; es decir, los números impares compuestos que no pueden expresarse como la suma de un número primo más dos veces la suma de un cuadrado. Por ejemplo,
   take 2 contraejemplosGoldbach  ==  [5777,5993]

Comprobar con QuickCheck que la conjetura de Golbach se verifica a partir de 5993; es decir, todo número compuesto impar mayor que 5993 puede expresarse como la suma de un número primo más dos veces la suma de un cuadrado.

Nota: Basado en el artículo La menos conocida de las conjeturas de Goldbach de Claudio Meller en el blog Números y algo más.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
 
imparesCompuestos :: [Integer]
imparesCompuestos = filter esCompuesto [3,5..]
 
-- (esCompuesto x) se verifica si x es un número compuesto. Por ejemplo,
--    esCompuesto 6  ==  True
--    esCompuesto 7  ==  False
esCompuesto :: Integer -> Bool
esCompuesto = not . isPrime
 
contraejemplosGoldbach :: [Integer]
contraejemplosGoldbach = filter esContraejemplo imparesCompuestos
 
-- (esContraejemplo x) es verifica si el número impar compuesto x es un
-- contraejemplo de la conjetura de Goldbach. Por ejemplo,
--    esContraejemplo 5777  ==  True
--    esContraejemplo 15    ==  False
esContraejemplo :: Integer -> Bool
esContraejemplo = null . descomposiciones
 
descomposiciones :: Integer -> [(Integer,Integer)]
descomposiciones n =
  [(p,x) | p <- takeWhile (<=n) primes
         , (n - p) `mod` 2 == 0
         , let x = (n - p) `div` 2
         , esCuadrado x]
 
-- (esCuadrado x) es verifica si x es un cuadrado perfecto. Por ejemplo, 
--    esCuadrado 16  ==  True
--    esCuadrado 27  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x = y^2 == x
  where y = ceiling (sqrt (fromIntegral x))
 
-- La propiedad es
prop_conjetura :: Int -> Property
prop_conjetura n =
  n >= 0 ==> not (esContraejemplo (imparesCompuestosMayore5993 !! n))
  where imparesCompuestosMayore5993 = dropWhile (<=5993) imparesCompuestos
 
-- La comprobación es
--    λ> quickCheck prop_conjetura
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Obvio es la palabra más peligrosa de las matemáticas.”

Eric Temple Bell