Menu Close

Etiqueta: fromIntegral

Entre dos potencias sucesivas

Se dice que un número entero está entre potencias sucesivas de n si x-1 es una potencia n-ésima y x+1 es una potencia (n+1)-ésima; es decir, si existen a y b tales que x-1 es a^n y x+1 es b^(n+1). Por ejemplo,

 2 está entre potencias sucesivas de 0, ya que  1 =  1^0 y  3 = 3^1
15 está entre potencias sucesivas de 1, ya que 14 = 14^1 y 16 = 4^2
26 está entre potencias sucesivas de 2, ya que 25 =  5^2 y 27 = 3^3

Definir las funciones

   entrePotencias :: Integer -> Integer -> Bool
   pares :: [(Integer,Integer)]
   paresEntrePotencias :: [(Integer,Integer)]

tales que

  • (entrePotencias n x) se verifica si x está entre potencias sucesivas de n. Por ejemplo,
     entrePotencias 0 2   ==  True
     entrePotencias 1 15  ==  True
     entrePotencias 2 26  ==  True
  • pares es la lista de los números enteros ordenados por su suma y primer elemento. Por ejemplo,
     λ> take 11 pares
     [(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),(0,4)]
  • paresEntrePotencias es la lista de los pares (n,x) tales que x está entre potencias sucesivas de n. Por ejemplo,
     λ> take 10 paresEntrePotencias
     [(1,0),(0,2),(1,3),(1,8),(1,15),(1,24),(2,26),(1,35),(1,48),(1,63)]

Comprobar con QuickCheck que 26 es el único número que está entre potencias sucesivas con exponentes mayor que 1; es decir, que el único par (n,x) tal que x está entre potencias sucesivas de n con n mayor que uno es el (2,26).

Nota: Este ejercicio ha sido propuesto por Rebeca Isabel González Gordillo y está basado en el artículo El número 26 … ¡un número especial! de Amadeo Artacho en MatematicasCercanas.

Soluciones

import Test.QuickCheck
 
entrePotencias :: Integer -> Integer -> Bool
entrePotencias n x = esPotencia n (x-1) && esPotencia (n+1) (x+1)
 
-- (esPotencia n x) se verifica si x es una potencia n-ésima. Por
-- ejemplo, 
--    esPotencia 3 27  ==  True
--    esPotencia 3 25  ==  False
esPotencia :: Integer -> Integer -> Bool
esPotencia n x = x == r^n
  where r = ceiling ((fromIntegral x)**(1/fromIntegral n))
 
pares :: [(Integer,Integer)]
pares = [(x,n-x) | n <- [0..], x <- [0..n]]
 
paresEntrePotencias :: [(Integer,Integer)]
paresEntrePotencias =
  [(n,x) | (n,x) <- pares
         , entrePotencias n x]
 
prop_entrePotencias :: Integer -> Integer -> Property
prop_entrePotencias n x =
  n > 1 ==> entrePotencias n x == ((n,x) == (2,26))
 
-- La comprobación es
--    λ> quickCheck prop_entrePotencias
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“El verdadero objetivo de la ciencia es el honor de la mente humana.”

Carl Gustav Jacob Jacobi

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

   mobius :: Integer -> Integer
   mertens :: Integer -> Integer
   graficaMertens :: Integer -> IO ()

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,
     mobius 6   ==  1
     mobius 30  ==  -1
     mobius 12  ==  0
  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,
     mertens 1     ==  1
     mertens 2     ==  0
     mertens 3     ==  -1
     mertens 5     ==  -2
     mertens 661   ==  -11
     mertens 1403  ==  11
  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
mobius :: Integer -> Integer
mobius n | tieneRepetidos xs = 0
         | otherwise         = (-1)^(length xs)
  where xs = primeFactors n
 
tieneRepetidos :: [Integer] -> Bool
tieneRepetidos xs =
  or [x == y | (x,y) <- zip xs (tail xs)]
 
mertens :: Integer -> Integer
mertens n = sum (map mobius [1..n])
 
-- Definición de graficaMertens
-- ============================
 
graficaMertens :: Integer -> IO ()
graficaMertens n = do
  plotLists [ Key Nothing
            , Title "Conjetura de Mertens"
            , PNG "La_conjetura_de_Mertens.png"
            ]
            [ [mertens k | k <- [1..n]]
            , raices
            , map negate raices
            ]
 
  where
    raices = [ceiling (sqrt k) | k <- [1..fromIntegral n]]
 
-- Conjetura de Mertens
-- ====================
 
-- La conjetura es
conjeturaDeMertens :: Integer -> Property
conjeturaDeMertens n =
  n > 1
  ==>
  abs (mertens n) < ceiling (sqrt n')
  where n' = fromIntegral n
 
-- La comprobación es
--    λ> quickCheck conjeturaDeMertens
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“El control de la complejidad es la esencia de la programación informática.”

Brian Kernighan.

Productos de sumas de cuatro cuadrados

Definir la función

   productoSuma4Cuadrados :: Integral a => [a] -> [a] -> [a] -> [a] -> a

tal que (productoSuma4Cuadrados as bs cs ds) es el producto de las sumas de los cuadrados de cada una de las listas que ocupan la misma posición (hasta que alguna se acaba). Por ejemplo,

   productoSuma4Cuadrados [2,3] [1,5] [4,6] [0,3,9]
   = (2² + 1² + 4² + 0²) * (3² + 5² + 6² + 3²)
   = (4 +  1 + 16  + 0)  * (9 + 25 + 36  + 9)
   = 1659

Comprobar con QuickCheckWith que si as, bs cs y ds son listas no vacías de enteros positivos, entonces (productoSuma4Cuadrados as bs cs ds) se puede escribir como la suma de los cuadrados de cuatro enteros positivos.

Soluciones

import Data.List (zip4)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
productoSuma4Cuadrados :: Integral a => [a] -> [a] -> [a] -> [a] -> a
productoSuma4Cuadrados (a:as) (b:bs) (c:cs) (d:ds) =
  (a^2+b^2+c^2+d^2) * productoSuma4Cuadrados as bs cs ds
productoSuma4Cuadrados _ _ _ _ = 1
 
-- 2ª solución
-- ===========
 
productoSuma4Cuadrados2 :: Integral a => [a] -> [a] -> [a] -> [a] -> a
productoSuma4Cuadrados2 as bs cs ds =
  product [a^2 + b^2 + c^2 + d^2 | (a,b,c,d) <- zip4 as bs cs ds]
 
-- Propiedad
-- =========
 
-- La propiedad es
prop_productoSuma4Cuadrados ::
  [Integer] -> [Integer] -> [Integer] -> [Integer] -> Property
prop_productoSuma4Cuadrados as bs cs ds =
  all (not . null) [as, bs, cs, ds]
  ==> 
  esSuma4Cuadrados (productoSuma4Cuadrados as' bs' cs' ds')
  where as' = [1 + abs a | a <- as]
        bs' = [1 + abs b | b <- bs]
        cs' = [1 + abs c | c <- cs]
        ds' = [1 + abs d | d <- ds]
 
-- (esSuma4Cuadrados n) se verifica si n es la suma de 4 cuadrados. Por
-- ejemplo, 
--    esSuma4Cuadrados 42  ==  True
--    esSuma4Cuadrados 11  ==  False
--    esSuma4Cuadrados 41  ==  False
esSuma4Cuadrados :: Integer -> Bool
esSuma4Cuadrados = not . null . sumas4Cuadrados
 
-- (sumas4Cuadrados n) es la lista de las descomposiciones de n como
-- sumas de 4 cuadrados. Por ejemplo,
--    sumas4Cuadrados 42  ==  [(16,16,9,1),(25,9,4,4),(36,4,1,1)]
sumas4Cuadrados :: Integer -> [(Integer,Integer,Integer,Integer)]
sumas4Cuadrados n =
  [(a^2,b^2,c^2,d) | a <- [1 .. floor (sqrt (fromIntegral n / 4))]
                   , b <- [a .. floor (sqrt (fromIntegral (n-a^2) / 3))]
                   , c <- [b .. floor (sqrt (fromIntegral (n-a^2-b^2) / 2))]
                   , let d = n - a^2 - b^2 - c^2
                   , c^2 <= d 
                   , esCuadrado d]
 
-- (esCuadrado x) se verifica si x es un número al cuadrado. Por
-- ejemplo,
--    esCuadrado 25  ==  True
--    esCuadrado 26  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x = x == y * y
  where y = raiz x
 
-- (raiz x) es la raíz cuadrada entera de x. Por ejemplo,
--    raiz 25  ==  5
--    raiz 24  ==  4
--    raiz 26  ==  5
raiz :: Integer -> Integer
raiz x = floor (sqrt (fromIntegral x))
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=5}) prop_productoSuma4Cuadrados
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

¿Vivir? Sencillamente:
la sed y el agua cerca …
o el agua lejos, más, la sed y el agua,
un poco de cansancio ¡y a beberla!.

Antonio Machado

Sumas de cuatro cuadrados

El número 42 es una suma de cuatro cuadrados de números enteros positivos ya que

   42 = 16 + 16 + 9 + 1 = 4² + 4² + 3² + 1²

Definir las funciones

   sumas4Cuadrados :: Integer -> [(Integer,Integer,Integer,Integer)]
   graficaNumeroSumas4Cuadrados :: Integer -> IO ()

tales que

  • (sumas4Cuadrados n) es la lista de las descompociones de n como suma de cuatro cuadrados. Por ejemplo,
     sumas4Cuadrados 42  ==  [(16,16,9,1),(25,9,4,4),(36,4,1,1)]
     sumas4Cuadrados 14  ==  []
     length (sumas4Cuadrados (5*10^4))  ==  260
  • (graficaNumeroSumas4Cuadrados n) dibuja la gráfica del número de descomposiciones en sumas de 4 cuadrados de los n primeros. Por ejemplo, (graficaNumeroSumas4Cuadrados 600) dibuja

Soluciones

Pensamiento

import Graphics.Gnuplot.Simple
 
-- 1ª definición de sumas4Cuadrados
-- ================================
 
sumas4Cuadrados :: Integer -> [(Integer,Integer,Integer,Integer)]
sumas4Cuadrados n =
  [(a^2,b^2,c^2,d) | a <- [1..n]
                   , b <- [a..n]
                   , c <- [b..n]
                   , let d = n - a^2 - b^2 - c^2
                   , c^2 <= d 
                   , esCuadrado d]
 
-- (esCuadrado x) se verifica si x es un número al cuadrado. Por
-- ejemplo,
--    esCuadrado 25  ==  True
--    esCuadrado 26  ==  False
esCuadrado :: Integer -> Bool
esCuadrado x = x == y * y
  where y = raiz x
 
-- (raiz x) es la raíz cuadrada entera de x. Por ejemplo,
--    raiz 25  ==  5
--    raiz 24  ==  4
--    raiz 26  ==  5
raiz :: Integer -> Integer
raiz x = floor (sqrt (fromIntegral x))
 
-- 2ª definición de sumas4Cuadrados
-- ================================
 
-- Los intervalos de búqueda en la definición anterior se pueden reducir
-- teniendo en cuenta las siguientes restricciones
--    1 <= a <= b <= c <= d 
--    n = a² + b² + c² + d² >= 4a² ==> a <= sqrt (n/4)
--    n - a² = b² + c² + d² >= 3b² ==> b <= sqrt ((n-a²)/3)
--    n - a² - b² = c² + d² >= 2c² ==> c <= sqrt ((n-a²-b²)/2)
 
sumas4Cuadrados2 :: Integer -> [(Integer,Integer,Integer,Integer)]
sumas4Cuadrados2 n =
  [(a^2,b^2,c^2,d) | a <- [1 .. floor (sqrt (fromIntegral n / 4))]
                   , b <- [a .. floor (sqrt (fromIntegral (n-a^2) / 3))]
                   , c <- [b .. floor (sqrt (fromIntegral (n-a^2-b^2) / 2))]
                   , let d = n - a^2 - b^2 - c^2
                   , c^2 <= d 
                   , esCuadrado d]
 
-- Comparación de eficiencia
-- =========================
 
-- La comprobación es
--    λ> length (sumas4Cuadrados 300)
--    11
--    (7.93 secs, 11,280,814,312 bytes)
--    λ> length (sumas4Cuadrados2 300)
--    11
--    (0.01 secs, 901,520 bytes)
 
-- Definición de graficaConvergencia
-- ==================================
 
graficaNumeroSumas4Cuadrados :: Integer -> IO ()
graficaNumeroSumas4Cuadrados n =
  plotList [ Key Nothing
           , Title "Numero de sumas como 4 cuadrados"
           , PNG "Sumas_de_cuatro_cuadrados.png"
           ]
           [length (sumas4Cuadrados2 k) | k <- [0..n]] 
 
-- Definición de esSuma4Cuadrados
-- ==============================
 
-- (esSuma4Cuadrados n) se verifica si n es la suma de 4 cuadrados. Por
-- ejemplo, 
--    esSuma4Cuadrados 42  ==  True
--    esSuma4Cuadrados 11  ==  False
--    esSuma4Cuadrados 41  ==  False
esSuma4Cuadrados :: Integer -> Bool
esSuma4Cuadrados = not . null . sumas4Cuadrados2

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

¿Cuál es el peor de todos
los afanes? Preguntar.
¿Y el mejor? – Hacer camino
sin volver la vista atrás.

Antonio Machado

Elementos múltiplos de la longitud de la lista

Definir las funciones

   multiplosDeLaLongitud :: [Int] -> [Int]
   multiplosDeLaLongitudDeConsecutivos :: Int -> Int -> [Int]

tales que

  • (multiplosDeLaLongitud xs) es la lista de los elementos de xs que son múltiplos de la longitud de xs. Por ejemplo,
     multiplosDeLaLongitud [2,4,6,8] == [4,8]
  • (multiplosDeLaLongitudDeConsecutivos n m) es la lista de elementos de [n..n+m-1] que son múltiplos de n. Por ejemplo,
     multiplosDeLaLongitudDeConsecutivos 9 2  ==  [10]
     multiplosDeLaLongitudDeConsecutivos 9 12 ==  [12]

Comprobar con QuickCheck si se verifican las siguientes propiedades

  • En cualquier conjunto de m elementos consecutivos, m divide exactamente a uno de dichos elementos. En otras palabras, si n y m son enteros positivos, entonces (multiplosDeLaLongitudDeConsecutivos n m) tiene exactamente un elemento.
  • Si n es un entero positivo y m >= n, entonces (multiplosDeLaLongitudDeConsecutivos n m) es igual a [m]
  • Si n y n son enteros positivos y m < n, entonces (multiplosDeLaLongitudDeConsecutivos n m) es igual a [m * ceiling (n’ / m’)] donde n’ y m’ son las formas decimales de n y m respectivamente.

Soluciones

import Test.QuickCheck
 
multiplosDeLaLongitud :: [Int] -> [Int]
multiplosDeLaLongitud xs =
  [x | x <- xs
     , x `mod`  n == 0]
  where n = length xs
 
multiplosDeLaLongitudDeConsecutivos :: Int -> Int -> [Int]
multiplosDeLaLongitudDeConsecutivos n m =
  multiplosDeLaLongitud [n..n+m-1]
 
-- La 1ª propiedad es
prop_multiplosDeLaLongitud :: Int -> Int -> Property
prop_multiplosDeLaLongitud n m =
  n > 0 && m > 0
  ==>
  length (multiplosDeLaLongitudDeConsecutivos n m) == 1
 
-- La comprobación es
--    λ> quickCheck prop_multiplosDeLaLongitud
--    +++ OK, passed 100 tests.
 
-- La 2ª propiedad es
prop_multiplosDeLaLongitud2 :: Int -> Int -> Property
prop_multiplosDeLaLongitud2 n m =
  n > 0 && m >= n
  ==>
  multiplosDeLaLongitudDeConsecutivos n m == [m]
 
-- La comprobación es
--    λ> quickCheck prop_multiplosDeLaLongitud2
--    +++ OK, passed 100 tests.
 
-- La 3ª propiedad es
prop_multiplosDeLaLongitud3 :: Int -> Int -> Property
prop_multiplosDeLaLongitud3 n m =
  n > 0 && 0 < m && m < n
  ==>
  multiplosDeLaLongitudDeConsecutivos n m == [m * ceiling (n' / m')]
  where n' = fromIntegral n
        m' = fromIntegral m 
 
-- La comprobación es
--    λ> quickCheck prop_multiplosDeLaLongitud3
--    +++ OK, passed 100 tests.
 
-- Con las propiedades anteriores se puede redefinir multiplos
multiplosDeLaLongitudDeConsecutivos2 :: Int -> Int -> [Int]
multiplosDeLaLongitudDeConsecutivos2 n m
  | m < n     = [m * ceiling (n' / m')]
  | otherwise = [m]
  where n' = fromIntegral n
        m' = fromIntegral m 
 
-- Comprobación de la equivalencia
prop_equiv :: Int -> Int -> Property
prop_equiv n m =
  n > 0 && m > 0
  ==>
  multiplosDeLaLongitudDeConsecutivos  n m ==
  multiplosDeLaLongitudDeConsecutivos2 n m
 
-- La comprobación es
--    λ> quickCheck prop_multiplosDeLaLongitud
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
--    λ> xs1 = [multiplosDeLaLongitudDeConsecutivos n (10^3) | n <- [1..10^4]]
--    (0.01 secs, 0 bytes)
--    λ> xs2 = [multiplosDeLaLongitudDeConsecutivos2 n (10^3) | n <- [1..10^4]]
--    (0.01 secs, 0 bytes)
--    λ> maximum xs1
--    [10000]
--    (2.51 secs, 2,093,241,168 bytes)
--    λ> maximum xs2
--    [10000]
--    (0.02 secs, 16,742,408 bytes)

Referencia

Pensamiento

Pensando que no veía
porque Dios no le miraba,
dijo Abel cuando moría:
Se acabó lo que se daba.

Antonio Machado