Menu Close

Etiqueta: div

Sucesión duplicadora

Para cada entero positivo n, existe una única sucesión que empieza en 1, termina en n y en la que cada uno de sus elementos es el doble de su anterior o el doble más uno. Dicha sucesión se llama la sucesión duplicadora de n. Por ejemplo, la sucesión duplicadora de 13 es [1, 3, 6, 13], ya que

    3 = 2*1 +1
    6 = 2*3
   13 = 2*6 +1

Definir la función

   duplicadora :: Integer -> [Integer]

tal que (duplicadora n) es la sucesión duplicadora de n. Por ejemplo,

   duplicadora 13                   ==  [1,3,6,13]
   duplicadora 17                   ==  [1,2,4,8,17]
   length (duplicadora (10^40000))  ==  132878

Soluciones

-- 1ª definición
duplicadora :: Integer -> [Integer]
duplicadora x =
  reverse (takeWhile (>=1) (iterate (`div` 2) x))
 
-- 2ª definición
duplicadora2 :: Integer -> [Integer]
duplicadora2  =
  reverse . takeWhile (>=1) . iterate (`div` 2)

Cadenas de primos complementarios

El complemento de un número positivo x se calcula por el siguiente procedimiento:

  • si x es mayor que 9, se toma cada dígito por su valor posicional y se resta del mayor los otro dígitos. Por ejemplo, el complemento de 1448 es 1000 – 400 – 40 – 8 = 552. Para
  • si x es menor que 10, su complemento es x.

Definir las funciones

   cadena    :: Integer -> [Integer]
   conCadena :: Int -> [Integer]

tales que

  • (cadena x) es la cadena de primos a partir de x tal que cada uno es el complemento del anterior. Por ejemplo,
     cadena 8         == []
     cadena 7         == [7]
     cadena 13        == [13,7]
     cadena 643       == [643,557,443]
     cadena 18127     == [18127,1873,127,73,67,53,47]
     cadena 18181213  == [18181213,1818787,181213,18787,1213,787,613,587]
  • (conCadena n) es la lista de números cuyas cadenas tienen n elementos. Por ejemplo,
     take 6 (conCadena 3)                == [23,31,61,67,103,307]
     [head (conCadena n) | n <- [4..8]]  == [37,43,157,18127,181873]

Soluciones

 
import Data.Numbers.Primes
 
-- (complemento x) es le complemento de x. Por ejemplo,
--    complemento 1448  == 552
--    complemento  639  == 561
--    complemento    7  == 7
complemento :: Integer -> Integer
complemento x = (div x c)*c - (rem x c)
  where c = 10^(length (show x) - 1)          
 
cadena :: Integer -> [Integer]
cadena x    
  | x < 10 && isPrime x = [x]
  | otherwise           = takeWhile isPrime (iterate f x)
  where f x | x < 10 && isPrime x = 0
            | otherwise           = complemento x
 
conCadena :: Int -> [Integer]
conCadena n =
  [y | y <- primes, length (cadena y) == n]

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

   cadenasDivisores :: Int -> [[Int]]

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

   λ> cadenasDivisores 12
   [[2,4,12],[2,6,12],[2,12],[3,6,12],[3,12],[4,12],[6,12],[12]]
   λ> length (cadenaDivisores 48)
   48
   λ> length (cadenaDivisores 120)
   132

Soluciones

import Data.List (sort)
import Data.Numbers.Primes (isPrime)
 
-- 1ª definición
-- =============
 
cadenasDivisores :: Int -> [[Int]]
cadenasDivisores n = sort (extiendeLista [[n]])
    where extiendeLista []           = []
          extiendeLista ((1:xs):yss) = xs : extiendeLista yss
          extiendeLista ((x:xs):yss) =
              extiendeLista ([y:x:xs | y <- divisores x] ++ yss)
 
-- (divisores x) es la lista decreciente de los divisores de x distintos
-- de x. Por ejemplo,
--    divisores 12  ==  [6,4,3,2,1]
divisores :: Int -> [Int]
divisores x = 
    [y | y <- [a,a-1..1], x `mod` y == 0]
    where a = x `div` 2
 
-- 2ª definición
-- =============
 
cadenasDivisores2 :: Int -> [[Int]]
cadenasDivisores2 = sort . aux
    where aux 1 = [[]]
          aux n = [xs ++ [n] | xs <- concatMap aux (divisores n)]
 
-- 3ª definición
-- =============
 
cadenasDivisores3 :: Int -> [[Int]]
cadenasDivisores3 = sort . map reverse . aux
    where aux 1 = [[]]
          aux n = map (n:) (concatMap aux (divisores3 n))
 
-- (divisores3 x) es la lista creciente de los divisores de x distintos
-- de x. Por ejemplo,
--    divisores3 12  ==  [1,2,3,4,6]
divisores3 :: Int -> [Int]
divisores3 x = 
    [y | y <- [1..a], x `mod` y == 0]
    where a = x `div` 2
 
-- 1ª definición de nCadenasDivisores
-- ==================================
 
nCadenasDivisores1 :: Int -> Int
nCadenasDivisores1 = length . cadenasDivisores
 
-- 2ª definición de nCadenasDivisores
-- ==================================
 
nCadenasDivisores2 :: Int -> Int
nCadenasDivisores2 1 = 1
nCadenasDivisores2 n = 
    sum [nCadenasDivisores2 x | x <- divisores n]

Sucesión fractal

La sucesión fractal

   0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, 0, 8, 4, 9, 2, 
   10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15, ...

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales
     0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
  • los términos impares forman la misma sucesión original
     0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, ...

Definir las funciones

   sucFractal     :: [Integer]
   sumaSucFractal :: Integer -> Integer

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,
     take 20 sucFractal   == [0,0,1,0,2,1,3,0,4,2,5,1,6,3,7,0,8,4,9,2]
     sucFractal !! 30     == 15
     sucFractal !! (10^7) == 5000000
  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,
     sumaSucFractal 10      == 13
     sumaSucFractal (10^5)  == 1666617368
     sumaSucFractal (10^10) == 16666666661668691669
     sumaSucFractal (10^15) == 166666666666666166673722792954
     sumaSucFractal (10^20) == 1666666666666666666616666684103392376198
     length (show (sumaSucFractal (10^15000))) == 30000
     sumaSucFractal (10^15000) `mod` (10^9)    == 455972157

Soluciones

 
-- 1ª definición de sucFractal
-- ===========================
 
sucFractal1 :: [Integer]
sucFractal1 = 
  map termino [0..]
 
-- (termino n) es el término n de la secuencia anterior. Por ejemplo,
--   termino 0            ==  0
--   termino 1            ==  0
--   map termino [0..10]  ==  [0,0,1,0,2,1,3,0,4,2,5]
termino :: Integer -> Integer
termino 0 = 0
termino n 
  | even n    = n `div` 2
  | otherwise = termino (n `div` 2)
 
-- 2ª definición de sucFractal
-- ===========================
 
sucFractal2 :: [Integer]
sucFractal2 =
  0 : 0 : mezcla [1..] (tail sucFractal2)
 
-- (mezcla xs ys) es la lista obtenida intercalando las listas infinitas
-- xs e ys. Por ejemplo,
--    take 10 (mezcla [0,2..] [0,-2..])  ==  [0,0,2,-2,4,-4,6,-6,8,-8]
mezcla :: [Integer] -> [Integer] -> [Integer]
mezcla (x:xs) (y:ys) =
  x : y : mezcla xs ys
 
-- Comparación de eficiencia de definiciones de sucFractal
-- =======================================================
 
--    λ> sum (take (10^6) sucFractal1)
--    166666169612
--    (5.56 secs, 842,863,264 bytes)
--    λ> sum (take (10^6) sucFractal2)
--    166666169612
--    (1.81 secs, 306,262,616 bytes)
 
-- En lo que sigue usaremos la 2ª definición
sucFractal :: [Integer]
sucFractal = sucFractal2
 
-- 1ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal1 :: Integer -> Integer
sumaSucFractal1 n =
  sum (map termino [0..n-1])
 
-- 2ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal2 :: Integer -> Integer
sumaSucFractal2 n =
  sum (take (fromIntegral n) sucFractal)
 
-- 3ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal3 :: Integer -> Integer
sumaSucFractal3 0 = 0
sumaSucFractal3 1 = 0
sumaSucFractal3 n
  | even n    = sumaN (n `div` 2) + sumaSucFractal3 (n `div` 2)
  | otherwise = sumaN ((n+1) `div` 2) + sumaSucFractal3 (n `div` 2)
  where sumaN n = (n*(n-1)) `div` 2
 
-- Comparación de eficiencia de definiciones de sumaSucFractal
-- ===========================================================
 
--    λ> sumaSucFractal1 (10^6)
--    166666169612
--    (5.25 secs, 810,622,504 bytes)
--    λ> sumaSucFractal2 (10^6)
--    166666169612
--    (1.72 secs, 286,444,048 bytes)
--    λ> sumaSucFractal3 (10^6)
--    166666169612
--    (0.01 secs, 0 bytes)
--    
--    λ> sumaSucFractal2 (10^7)
--    16666661685034
--    (17.49 secs, 3,021,580,920 bytes)
--    λ> sumaSucFractal3 (10^7)
--    16666661685034
--    (0.01 secs, 0 bytes)

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

   mayorCapicuaP :: Integer -> Integer

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

   mayorCapicuaP 2  ==  9009
   mayorCapicuaP 3  ==  906609
   mayorCapicuaP 4  ==  99000099
   mayorCapicuaP 5  ==  9966006699
   mayorCapicuaP 6  ==  999000000999
   mayorCapicuaP 7  ==  99956644665999

Soluciones

-- 1ª solución
-- ===========
 
mayorCapicuaP1 :: Integer -> Integer
mayorCapicuaP1 n = head (capicuasP n)
 
-- (capicuasP n) es la lista de las capicúas de 2*n cifras que
-- pueden escribirse como productos de dos números de n cifras. Por
-- ejemplo, Por ejemplo,
--    ghci> capicuasP 2
--    [9009,8448,8118,8008,7227,7007,6776,6336,6006,5775,5445,5335,
--     5225,5115,5005,4884,4774,4664,4554,4224,4004,3773,3663,3003,
--     2992,2772,2552,2442,2332,2112,2002,1881,1771,1551,1221,1001]
capicuasP n = [x | x <- capicuas n,
                        not (null (productosDosNumerosCifras n x))]
 
-- (capicuas n) es la lista de las capicúas de 2*n cifras de mayor a
-- menor. Por ejemplo, 
--    capicuas 1           ==  [99,88,77,66,55,44,33,22,11]
--    take 7 (capicuas 2)  ==  [9999,9889,9779,9669,9559,9449,9339]
capicuas :: Integer -> [Integer]
capicuas n = [capicua x | x <- numerosCifras n]
 
-- (numerosCifras n) es la lista de los números de n cifras de mayor a
-- menor. Por ejemplo,
--    numerosCifras 1           ==  [9,8,7,6,5,4,3,2,1]
--    take 7 (numerosCifras 2)  ==  [99,98,97,96,95,94,93]
--    take 7 (numerosCifras 3)  ==  [999,998,997,996,995,994,993]
numerosCifras :: Integer -> [Integer]
numerosCifras n = [a,a-1..b]
  where a = 10^n-1
        b = 10^(n-1) 
 
-- (capicua n) es la capicúa formada añadiendo el inverso de n a
--  continuación de n. Por ejemplo,
--    capicua 93  ==  9339
capicua :: Integer -> Integer
capicua n = read (xs ++ (reverse xs))
  where xs = show n
 
-- (productosDosNumerosCifras n x) es la lista de los números y de n
-- cifras tales que existe un z de n cifras y x es el producto de y por
-- z. Por ejemplo, 
--    productosDosNumerosCifras 2 9009  ==  [99,91]
productosDosNumerosCifras n x = [y | y <- numeros,
                                     mod x y == 0,
                                     div x y `elem` numeros]
  where numeros = numerosCifras n
 
-- 2ª solución
-- ===========
 
mayorCapicuaP2 :: Integer -> Integer
mayorCapicuaP2 n = maximum [x*y | x <- [a,a-1..b],
                                  y <- [a,a-1..b],
                                  esCapicua (x*y)] 
  where a = 10^n-1
        b = 10^(n-1)
 
-- (esCapicua x) se verifica si x es capicúa. Por ejemplo,
--    esCapicua 353  ==  True
--    esCapicua 357  ==  False
esCapicua :: Integer -> Bool
esCapicua n = xs == reverse xs
  where xs = show n
 
-- 3ª solución
-- ===========
 
mayorCapicuaP3 :: Integer -> Integer
mayorCapicuaP3 n = maximum [x*y | (x,y) <- pares a b, 
                                  esCapicua (x*y)] 
  where a = 10^n-1
        b = 10^(n-1)
 
-- (pares a b) es la lista de los pares de números entre a y b de forma
-- que su suma es decreciente. Por ejemplo,
--    pares 9 7  ==  [(9,9),(8,9),(8,8),(7,9),(7,8),(7,7)]
pares a b = [(x,z-x) | z <- [a1,a1-1..b1],
                       x <- [a,a-1..b],
                       x <= z-x, z-x <= a]
  where a1 = 2*a
        b1 = 2*b
 
-- 4ª solución
-- ===========
 
mayorCapicuaP4 :: Integer -> Integer
mayorCapicuaP4 n = maximum [x | y <- [a..b],
                                z <- [y..b],
                                let x = y * z,
                                let s = show x,
                                s == reverse s]
  where a = 10^(n-1)
        b = 10^n-1
 
-- 5ª solución
-- ===========
 
mayorCapicuaP5 :: Integer -> Integer
mayorCapicuaP5 n = maximum [x*y | (x,y) <- pares2 b a, esCapicua (x*y)]
  where a = 10^(n-1)
        b = 10^n-1
 
-- (pares2 a b) es la lista de los pares de números entre a y b de forma
-- que su suma es decreciente. Por ejemplo,
--    pares2 9 7  ==  [(9,9),(8,9),(8,8),(7,9),(7,8),(7,7)]
pares2 a b = [(x,y) | x <- [a,a-1..b], y <- [a,a-1..x]]
 
-- 6ª solución
-- ===========
 
mayorCapicuaP6 :: Integer -> Integer
mayorCapicuaP6 n = maximum [x*y | x <- [a..b], 
                                  y <- [x..b] , 
                                  esCapicua (x*y)]
  where a = 10^(n-1)
        b = 10^n-1
 
-- (cifras n) es la lista de las cifras de n en orden inverso. Por
-- ejemplo,  
--    cifras 325  == [5,2,3]
cifras :: Integer -> [Integer]
cifras n 
    | n < 10    = [n]
    | otherwise = (ultima n) : (cifras (quitarUltima n))
 
-- (ultima n) es la última cifra de n. Por ejemplo,
--    ultima 325  ==  5
ultima  :: Integer -> Integer
ultima n =  n - (n `div` 10)*10
 
-- (quitarUltima n) es el número obtenido al quitarle a n su última
-- cifra. Por ejemplo,
--    quitarUltima 325  =>  32 
quitarUltima :: Integer -> Integer
quitarUltima n = (n - (ultima n)) `div` 10
 
-- 7ª solución
-- ===========
 
mayorCapicuaP7 :: Integer -> Integer
mayorCapicuaP7 n = head [x | x <- capicuas n, esFactorizable x n]
 
-- (esFactorizable x n) se verifica si x se puede escribir como producto
-- de dos números de n dígitos. Por ejemplo,
--    esFactorizable 1219 2  ==  True
--    esFactorizable 1217 2  ==  False
esFactorizable x n = aux i x
  where b = 10^n-1
        i = floor (sqrt (fromIntegral x))
        aux i x | i > b          = False
                | x `mod` i == 0 = x `div` i < b 
                | otherwise      = aux (i+1) x
 
-- Comparación de eficiencia
-- =========================
 
--    λ> mayorCapicuaP1 3
--    906609
--    (0.07 secs, 18,248,224 bytes)
--    λ> mayorCapicuaP2 3
--    906609
--    (0.51 secs, 555,695,720 bytes)
--    λ> mayorCapicuaP3 3
--    906609
--    (0.96 secs, 780,794,768 bytes)
--    λ> mayorCapicuaP4 3
--    906609
--    (0.24 secs, 255,445,448 bytes)
--    λ> mayorCapicuaP5 3
--    906609
--    (0.33 secs, 317,304,080 bytes)
--    λ> mayorCapicuaP6 3
--    906609
--    (0.26 secs, 274,987,472 bytes)
--    λ> mayorCapicuaP7 3
--    906609
--    (0.02 secs, 1,807,720 bytes)
--    
--    λ> mayorCapicuaP1 5
--    9966006699
--    (9.90 secs, 6,349,454,544 bytes)
--    λ> mayorCapicuaP7 5
--    9966006699
--    (0.06 secs, 15,958,616 bytes)

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

   reparto :: Int -> [Int] -> [(Int,Int)]

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

   ghci> reparto 7 [340000,280000,160000,60000,15000]
   [(1,3),(2,3),(3,1)]
   ghci> reparto 21 [391000,311000,184000,73000,27000,12000,2000]
   [(1,9),(2,7),(3,4),(4,1)]

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

import Data.List (sort, group)
 
-- Para los ejemplos que siguen, se usará la siguiente ditribución de
-- votos entre 5 partidos.
ejVotos :: [Int]
ejVotos = [340000,280000,160000,60000,15000]
 
-- 1ª solución
-- ===========
 
reparto :: Int -> [Int] -> [(Int,Int)]
reparto n vs = 
  [(x,1 + length xs) | (x:xs) <- group (sort (repartoAux n vs))] 
 
-- (repartoAux n vs) es el número de los partidos, cuyos votos son vs, que
-- obtienen los n escaños. Por ejemplo,
--    ghci> repartoAux 7 ejVotos
--    [1,2,1,3,2,1,2]
repartoAux :: Int -> [Int] -> [Int]
repartoAux n vs = map snd (repartoAux' n vs)
 
-- (repartoAux' n vs) es la lista formada por los n restos mayores
-- correspondientes a la lista de votos vs. Por ejemplo,
--    ghci> repartoAux' 7 ejVotos
--    [(340000,1),(280000,2),(170000,1),(160000,3),(140000,2),(113333,1),
--     (93333,2)]
repartoAux' :: Int -> [Int] -> [(Int,Int)]
repartoAux' n vs = 
  take n (reverse (sort (concatMap (restos n) (votosPartidos vs))))
 
-- (votosPartidos vs) es la lista con los pares formados por los votos y
-- el número de cada partido. Por ejemplo, 
--    ghci> votosPartidos ejVotos
--    [(340000,1),(280000,2),(160000,3),(60000,4),(15000,5)]
votosPartidos :: [Int] -> [(Int,Int)]
votosPartidos vs = zip vs [1..]
 
-- (restos n (x,i)) es la lista obtenidas dividiendo n entre 1, 2,..., n.
-- Por ejemplo, 
--    ghci> restos 5 (340000,1)
--    [(340000,1),(170000,1),(113333,1),(85000,1),(68000,1)]
restos :: Int -> (Int,Int) -> [(Int,Int)]
restos n (x,i) = [(x `div` k,i) | k <- [1..n]]
 
-- 2ª solución
-- ===========
 
reparto2 :: Int -> [Int] -> [(Int,Int)]
reparto2 n xs = 
  ( map (\x -> (head x, length x))  
  . group  
  . sort  
  . map snd  
  . take n  
  . reverse  
  . sort
  ) [(x `div` i, p) | (x,p) <- zip xs [1..], i <- [1..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de las familias estables por uniones

La conjetura de las familias estables por uniones fue planteada por Péter Frankl en 1979 y aún sigue abierta.

Una familia de conjuntos es estable por uniones si la unión de dos conjuntos cualesquiera de la familia pertenece a la familia. Por ejemplo, {∅, {1}, {2}, {1,2}, {1,3}, {1,2,3}} es estable por uniones; pero {{1}, {2}, {1,3}, {1,2,3}} no lo es.

La conjetura afirma que toda familia no vacía estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de la familia.

Definir las funciones

   esEstable :: Ord a => Set (Set a) -> Bool
   familiasEstables :: Ord a => Set a -> Set (Set (Set a))
   mayoritarios :: Ord a => Set (Set a) -> [a]
   conjeturaFrankl :: Int -> Bool

tales que

  • (esEstable f) se verifica si la familia f es estable por uniones. Por ejemplo,
     λ> esEstable (fromList [empty, fromList [1,2], fromList [1..5]])
     True
     λ> esEstable (fromList [empty, fromList [1,7], fromList [1..5]])
     False
     λ> esEstable (fromList [fromList [1,2], singleton 3, fromList [1..3]])
     True
  • (familiasEstables c) es el conjunto de las familias estables por uniones formadas por elementos del conjunto c. Por ejemplo,
     λ> familiasEstables (fromList [1..2])
     fromList
       [ fromList []
       , fromList [fromList []]
       , fromList [fromList [],fromList [1]]
       , fromList [fromList [],fromList [1],fromList [1,2]],
         fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [1,2]]
       , fromList [fromList [],fromList [1,2],fromList [2]]
       , fromList [fromList [],fromList [2]]
       , fromList [fromList [1]]
       , fromList [fromList [1],fromList [1,2]]
       , fromList [fromList [1],fromList [1,2],fromList [2]]
       , fromList [fromList [1,2]]
       , fromList [fromList [1,2],fromList [2]]
       , fromList [fromList [2]]]
     λ> size (familiasEstables (fromList [1,2]))
     14
     λ> size (familiasEstables (fromList [1..3]))
     122
     λ> size (familiasEstables (fromList [1..4]))
     4960
  • (mayoritarios f) es la lista de elementos que pertenecen al menos a la mitad de los conjuntos de la familia f. Por ejemplo,
     mayoritarios (fromList [empty, fromList [1,3], fromList [3,5]]) == [3]
     mayoritarios (fromList [empty, fromList [1,3], fromList [4,5]]) == []
  • (conjeturaFrankl n) se verifica si para toda familia f formada por elementos del conjunto {1,2,…,n} no vacía, estable por uniones y distinta de {∅} posee algún elemento que pertenece al menos a la mitad de los conjuntos de f. Por ejemplo.
     conjeturaFrankl 2  ==  True
     conjeturaFrankl 3  ==  True
     conjeturaFrankl 4  ==  True

Soluciones

 
import Data.Set  as S ( Set
                      , delete
                      , deleteFindMin
                      , empty
                      , filter
                      , fromList
                      , insert
                      , map
                      , member
                      , null
                      , singleton
                      , size
                      , toList
                      , union
                      , unions
                      )
import Data.List as L ( filter
                      , null
                      )
 
esEstable :: Ord a => Set (Set a) -> Bool
esEstable xss =
  and [ys `S.union` zs `member` xss | (ys,yss) <- selecciones xss
                                    , zs <- toList yss]
 
-- (seleccciones xs) es la lista de los pares formada por un elemento de
-- xs y los restantes elementos. Por ejemplo,
--    λ> selecciones (fromList [3,2,5])
--    [(2,fromList [3,5]),(3,fromList [2,5]),(5,fromList [2,3])]
selecciones :: Ord a => Set a -> [(a,Set a)]
selecciones xs =
  [(x,delete x xs) | x <- toList xs] 
 
familiasEstables :: Ord a => Set a -> Set (Set (Set a))
familiasEstables xss =
  S.filter esEstable (familias xss)
 
-- (familias c) es la familia formadas con elementos de c. Por ejemplo,
--    λ> mapM_ print (familias (fromList [1,2]))
--    fromList []
--    fromList [fromList []]
--    fromList [fromList [],fromList [1]]
--    fromList [fromList [],fromList [1],fromList [1,2]]
--    fromList [fromList [],fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [1],fromList [2]]
--    fromList [fromList [],fromList [1,2]]
--    fromList [fromList [],fromList [1,2],fromList [2]]
--    fromList [fromList [],fromList [2]]
--    fromList [fromList [1]]
--    fromList [fromList [1],fromList [1,2]]
--    fromList [fromList [1],fromList [1,2],fromList [2]]
--    fromList [fromList [1],fromList [2]]
--    fromList [fromList [1,2]]
--    fromList [fromList [1,2],fromList [2]]
--    fromList [fromList [2]]
--    λ> size (familias (fromList [1,2]))
--    16
--    λ> size (familias (fromList [1,2,3]))
--    256
--    λ> size (familias (fromList [1,2,3,4]))
--    65536
familias :: Ord a => Set a -> Set (Set (Set a))
familias c =
  subconjuntos (subconjuntos c)
 
-- (subconjuntos c) es el conjunto de los subconjuntos de c. Por ejemplo,
--    λ> mapM_ print (subconjuntos (fromList [1,2,3]))
--    fromList []
--    fromList [1]
--    fromList [1,2]
--    fromList [1,2,3]
--    fromList [1,3]
--    fromList [2]
--    fromList [2,3]
--    fromList [3]
subconjuntos :: Ord a => Set a -> Set (Set a)
subconjuntos c
  | S.null c  = singleton empty
  | otherwise = S.map (insert x) sr `union` sr
  where (x,rc) = deleteFindMin c
        sr     = subconjuntos rc
 
-- (elementosFamilia f) es el conjunto de los elementos de los elementos
-- de la familia f. Por ejemplo, 
--    λ> elementosFamilia (fromList [empty, fromList [1,2], fromList [2,5]])
--    fromList [1,2,5]
elementosFamilia :: Ord a => Set (Set a) -> Set a
elementosFamilia = unions . toList
 
-- (nOcurrencias f x) es el número de conjuntos de la familia f a los
-- que pertenece el elemento x. Por ejemplo,
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 3 == 2
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 4 == 0
--    nOcurrencias (fromList [empty, fromList [1,3], fromList [3,5]]) 5 == 1
nOcurrencias :: Ord a => Set (Set a) -> a -> Int
nOcurrencias f x =
  length (L.filter (x `member`) (toList f))
 
mayoritarios :: Ord a => Set (Set a) -> [a]
mayoritarios f =
  [x | x <- toList (elementosFamilia f)
     , nOcurrencias f x >= n]
  where n = (1 + size f) `div` 2
 
conjeturaFrankl :: Int -> Bool
conjeturaFrankl n =
  and [ not (L.null (mayoritarios f))
      | f <- fs
      , f /= fromList []
      , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))
 
 
-- conjeturaFrankl' :: Int -> Bool
conjeturaFrankl' n =
  [f | f <- fs
     , L.null (mayoritarios f)
     , f /= fromList []
     , f /= fromList [empty]]
  where fs = toList (familiasEstables (fromList [1..n]))

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Suma de segmentos iniciales

Los segmentos iniciales de [3,1,2,5] son [3], [3,1], [3,1,2] y [3,1,2,5]. Sus sumas son 3, 4, 6 y 9, respectivamente. La suma de dichas sumas es 24.

Definir la función

   sumaSegmentosIniciales :: [Integer] -> Integer

tal que (sumaSegmentosIniciales xs) es la suma de las sumas de los segmentos iniciales de xs. Por ejemplo,

   sumaSegmentosIniciales [3,1,2,5]     ==  24
   sumaSegmentosIniciales [1..3*10^6]  ==  4500004500001000000

Comprobar con QuickCheck que la suma de las sumas de los segmentos iniciales de la lista formada por n veces el número uno es el n-ésimo número triangular; es decir que

   sumaSegmentosIniciales (genericReplicate n 1)

es igual a

   n * (n + 1) `div` 2

Soluciones

import Data.List (genericLength, genericReplicate)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
sumaSegmentosIniciales :: [Integer] -> Integer
sumaSegmentosIniciales xs =
  sum [sum (take k xs) | k <- [1.. length xs]]
 
-- 2ª solución
-- ===========
 
sumaSegmentosIniciales2 :: [Integer] -> Integer
sumaSegmentosIniciales2 xs =
  sum (zipWith (*) [n,n-1..1] xs)
  where n = genericLength xs
 
-- 3ª solución
-- ===========
 
sumaSegmentosIniciales3 :: [Integer] -> Integer
sumaSegmentosIniciales3 xs =
  sum (scanl1 (+) xs)
 
-- Comprobación de la equivalencia
-- ===============================
 
-- La propiedad es
prop_sumaSegmentosInicialesEquiv :: [Integer] -> Bool
prop_sumaSegmentosInicialesEquiv xs =
  all (== sumaSegmentosIniciales xs) [f xs | f <- [ sumaSegmentosIniciales2
                                                  , sumaSegmentosIniciales3]]
 
-- La comprobación es
--   λ> quickCheck prop_sumaSegmentosInicialesEquiv
--   +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
--   λ> sumaSegmentosIniciales [1..10^4]
--   166716670000
--   (2.42 secs, 7,377,926,824 bytes)
--   λ> sumaSegmentosIniciales2 [1..10^4]
--   166716670000
--   (0.01 secs, 4,855,176 bytes)
--   
--   λ> sumaSegmentosIniciales2 [1..3*10^6]
--   4500004500001000000
--   (2.68 secs, 1,424,404,168 bytes)
--   λ> sumaSegmentosIniciales3 [1..3*10^6]
--   4500004500001000000
--   (1.54 secs, 943,500,384 bytes)
 
-- Comprobación de la propiedad
-- ============================
 
-- La propiedad es
prop_sumaSegmentosIniciales :: Positive Integer -> Bool
prop_sumaSegmentosIniciales (Positive n) =
  sumaSegmentosIniciales3 (genericReplicate n 1) ==
  n * (n + 1) `div` 2
 
-- La compronación es
--   λ> quickCheck prop_sumaSegmentosIniciales
--   +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

   7       es divisible por 1
   74      es divisible por 2
   741     es divisible por 3
   7415 no es divisible por 4

Definir la función

   ordenDeDivisibilidad :: Integer -> Int

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

   ordenDeDivisibilidad 74156                      ==  3
   ordenDeDivisibilidad 12                         ==  2
   ordenDeDivisibilidad 7                          ==  1
   ordenDeDivisibilidad 3608528850368400786036725  ==  25

Soluciones

import Data.List (inits)
 
-- 1ª definición de ordenDeDivisibilidad
-- =====================================
 
ordenDeDivisibilidad :: Integer -> Int
ordenDeDivisibilidad n = 
  length (takeWhile (\(x,k) -> x `mod` k == 0) (zip (sucDigitos n) [1..]))
 
-- (sucDigitos x) es la sucesión de los dígitos de x. Por ejemplo,
--    sucDigitos 325    ==  [3,32,325]
--    sucDigitos 32050  ==  [3,32,320,3205,32050]
sucDigitos :: Integer -> [Integer]
sucDigitos n = 
    [n `div` (10^i) | i <- [k-1,k-2..0]]
    where k = length (show n)
 
-- 2ª definición de sucDigitos
sucDigitos2 :: Integer -> [Integer]
sucDigitos2 n = [read xs | xs <- aux (show n)]
  where aux []     = []
        aux (d:ds) = [d] : map (d:) (aux ds)
 
-- 3ª definición de sucDigitos
sucDigitos3 :: Integer -> [Integer]
sucDigitos3 n = 
  [read (take k ds) | k <- [1..length ds]]
  where ds = show n
 
-- 4ª definición de sucDigitos
sucDigitos4 :: Integer -> [Integer]
sucDigitos4 n = [read xs | xs <- tail (inits (show n))]
 
-- 5ª definición de sucDigitos
sucDigitos5 :: Integer -> [Integer]
sucDigitos5 n = map read (tail (inits (show n)))
 
-- 6ª definición de sucDigitos
sucDigitos6 :: Integer -> [Integer]
sucDigitos6 = map read . (tail . inits . show)
 
-- Eficiencia de las definiciones de sucDigitos
--    ghci> length (sucDigitos (10^5000))
--    5001
--    (0.01 secs, 1550688 bytes)
--    ghci> length (sucDigitos2 (10^5000))
--    5001
--    (1.25 secs, 729411872 bytes)
--    ghci> length (sucDigitos3 (10^5000))
--    5001
--    (0.02 secs, 2265120 bytes)
--    ghci> length (sucDigitos4 (10^5000))
--    5001
--    (1.10 secs, 728366872 bytes)
--    ghci> length (sucDigitos5 (10^5000))
--    5001
--    (1.12 secs, 728393864 bytes)
--    ghci> length (sucDigitos6 (10^5000))
--    5001
--    (1.20 secs, 728403052 bytes)
-- 
--    ghci> length (sucDigitos (10^3000000))
--    3000001
--    (2.73 secs, 820042696 bytes)
--    ghci> length (sucDigitos3 (10^3000000))
--    3000001
--    (3.69 secs, 820043688 bytes)
 
-- 2ª definición de ordenDeDivisibilidad
-- =====================================
 
ordenDeDivisibilidad2 :: Integer -> Int
ordenDeDivisibilidad2 x =
  length
  $ takeWhile (==0)
  $ zipWith (mod . read) (tail $ inits $ show x) [1..]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

La conjetura de Levy

Hyman Levy observó que

    7 = 3 + 2 x 2
    9 = 3 + 2 x 3 =  5 + 2 x 2
   11 = 5 + 2 x 3 =  7 + 2 x 2
   13 = 3 + 2 x 5 =  7 + 2 x 3
   15 = 3 + 2 x 5 = 11 + 2 x 2
   17 = 3 + 2 x 7 =  7 + 2 x 5 = 11 + 2 x 3 = 13 + 2 x 2
   19 = 5 + 2 x 7 = 13 + 2 x 3

y conjeturó que todos los número impares mayores o iguales que 7 se pueden escribir como la suma de un primo y el doble de un primo. El objetivo de los siguientes ejercicios es comprobar la conjetura de Levy.

Definir las siguientes funciones

   descomposicionesLevy :: Integer -> [(Integer,Integer)]
   graficaLevy          :: Integer -> IO ()

tales que

  • (descomposicionesLevy x) es la lista de pares de primos (p,q) tales que x = p + 2q. Por ejemplo,
     descomposicionesLevy  7  ==  [(3,2)]
     descomposicionesLevy  9  ==  [(3,3),(5,2)]
     descomposicionesLevy 17  ==  [(3,7),(7,5),(11,3),(13,2)]
  • (graficaLevy n) dibuja los puntos (x,y) tales que x pertenece a [7,9..7+2x(n-1)] e y es el número de descomposiciones de Levy de x. Por ejemplo, (graficaLevy 200) dibuja
    La_conjetura_de_Levy-200

Comprobar con QuickCheck la conjetura de Levy.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
descomposicionesLevy :: Integer -> [(Integer,Integer)]
descomposicionesLevy x =
  [(p,q) | p <- takeWhile (< x) (tail primes)
         , let q = (x - p) `div` 2
         , isPrime q]
 
graficaLevy :: Integer -> IO ()
graficaLevy n =
  plotList [ Key Nothing
           , XRange (7,fromIntegral (7+2*(n-1)))
           , PNG ("La_conjetura_de_Levy-" ++ show n ++ ".png")
           ]
           [(x, length (descomposicionesLevy x)) | x <- [7,9..7+2*(n-1)]] 
 
-- La propiedad es
prop_Levy :: Integer -> Bool
prop_Levy x =
  not (null (descomposicionesLevy (7 + 2 * abs x)))
 
-- La comprobación es
--    λ> quickCheck prop_Levy
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Dios creó el número natural, y todo el resto es obra del hombre.”

Leopold Kronecker