Sucesiones de números consecutivos con suma dada

El número 15 se puede escribir de 5 formas como suma de números naturales consecutivos:

Definir las funciones

tales que

  • (sucesionesConSuma n) es la lista de los pares formados por el primero y por el último elemento de las sucesiones de números naturales consecutivos con suma n. Por ejemplo,

  • (graficaSucesionesConSuma n) dibuja la gráfica del número de formas de escribir los n primeros números como suma de números naturales consecutivos. Por ejemplo, (graficaSucesionesConSuma 100) dibuja
    Sucesiones_de_numeros_consecutivos_con_suma_dada

Soluciones

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,

  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

Particiones primas

Una partición prima de un número natural n es un conjunto de primos cuya suma es n. Por ejemplo, el número 7 tiene 7 particiones primas ya que

Definir la función

tal que (particiones n) es el comjunto de las particiones primas de n. Por ejemplo,

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Soluciones

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Definir la función

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Suma de las sumas de los cuadrados de los divisores

La suma de las sumas de los cuadrados de los divisores de los 6 primeros números enteros positivos es

Definir la función

tal que (sumaSumasCuadradosDivisores n) es la suma de las sumas de los cuadrados de los divisores de los n primeros números enteros positivos. Por ejemplo,

Soluciones

Suma de los dígitos de las repeticiones de un número

Dados dos números naturales n y x, su suma reducida se obtiene a partir del número obtenido repitiendo n veces el x sumando sus dígitos hasta obtener un número con sólo un dígito. Por ejemplo, si n es 3 y x es 24 las transformaciones son

Análogamente, si n es 4 y x es 7988 las transformaciones son

Definir las funciones

tales que

  • (sumaReducidaDigitosRepeticiones n x) es la suma reducida de n repeticiones de x. Por ejemplo

  • (grafica n) dibuja la gráfica de los n primeros elementos de la sucesión cuyo elementos k-ésimo es (sumaReducidaDigitosRepeticiones k k). Por ejemplo, (grafica 50) dibuja
    Suma_de_los_digitos_de_las_repeticiones_de_un_numero50

Soluciones

Nodos con máxima suma de hijos

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (nodosSumaMaxima a) es la lista de los nodos del árbol a cuyos hijos tienen máxima suma. Por ejemplo,

Soluciones

Números cuyos factoriales son divisibles por x pero no por y

Hay 3 números (el 2, 3 y 4) cuyos factoriales son divisibles por 2 pero no por 5. Análogamente, hay números 5 (el 5, 6, 7, 8, 9) cuyos factoriales son divisibles por 15 pero no por 25.

Definir la función

tal que (nNumerosConFactorialesDivisibles x y) es la cantidad de números cuyo factorial es divisible por x pero no por y. Por ejemplo,

Soluciones

Ceros con los n primeros números

Los números del 1 al 3 se pueden escribir de dos formas, con el signo más o menos entre ellos, tales que su suma sea 0:

Definir la función

tal que (ceros n) son las posibles formas de obtener cero sumando los números del 1 al n, con el signo más o menos entre ellos. Por ejemplo,

Soluciones

Menor número divisible por 10^n cuyos dígitos suman n

Definir la función

tal que (menor n) es el menor número divisible por 10^n cuyos dígitos suman n. Por ejemplo,

Soluciones

Períodos de Fibonacci

Los primeros términos de la sucesión de Fibonacci son

Al calcular sus restos módulo 3 se obtiene

Se observa que es periódica y su período es

Definir las funciones

tales que

  • (fibsMod n) es la lista de los términos de la sucesión de Fibonacci módulo n. Por ejemplo,

  • (periodoFibMod n) es la parte perioica de la sucesión de Fibonacci módulo n. Por ejemplo,

  • longPeriodosFibMod es la sucesión de las longitudes de los períodos de las sucesiones de Fibonacci módulo n, para n > 0. Por ejemplo,

  • (graficaLongPeriodosFibMod n) dibuja la gráfica de los n primeros términos de la sucesión longPeriodosFibMod. Por ejemplo, (graficaLongPeriodosFibMod n) dibuja
    Periodos_de_Fibonacci 300

Soluciones

División equitativa

Definir la función

tal que (divisionEquitativa xs) determina si la lista de números enteros positivos xs se puede dividir en dos partes (sin reordenar sus elementos) con la misma suma. Si es posible, su valor es el par formado por las dos partes. Si no lo es, su valor es Nothing. Por ejemplo,

Soluciones

Exponentes de Hamming

Los números de Hamming forman una sucesión estrictamente creciente de números que cumplen las siguientes condiciones:

  • El número 1 está en la sucesión.
  • Si x está en la sucesión, entonces 2x, 3x y 5x también están.
  • Ningún otro número está en la sucesión.

Los primeros números de Hamming son 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, …

Los exponentes de un número de Hamming n es una terna (x,y,z) tal que n = 2^x*3^y*5^z. Por ejemplo, los exponentes de 600 son (3,1,2) ya que 600 = 2^x*3^1*5^z.

Definir la sucesión

cuyos elementos son los exponentes de los números de Hamming. Por ejemplo,

Soluciones

Relaciones arbóreas

Como se explica en el ejercicio Relación definida por un árbol, cada árbol binario define una relación binaria donde un elemento x está relacionado con y si x es el padre de y.

Una relación binaria es arbórea si

  • hay exactamente un elemento que no tiene ningún (la raíz del árbol) y
  • todos los elementos tienen dos hijos (los nodos internos) o ninguno (las hojas del árbol).

Definir la función

tal que (arborea r) se verifica si la relación r es arbórea. Por ejemplo,

Soluciones

Sumas parciales de Juzuk

En 1939 Dov Juzuk extendió el método de Nicómaco del cálculo de los cubos. La extensión se basaba en los siguientes pasos:

  • se comienza con la lista de todos los enteros positivos

  • se agrupan tomando el primer elemento, los dos siguientes, los tres
    siguientes, etc.

  • se seleccionan los elementos en posiciones pares

  • se suman los elementos de cada grupo

  • se calculan las sumas acumuladas

Las sumas obtenidas son las cuantas potencias de los números enteros positivos.

Definir las funciones

tal que

  • (listasParcialesJuzuk xs) es lalista de ls listas parciales de Juzuk; es decir, la selección de los elementos en posiciones pares de la agrupación de los elementos de xs tomando el primer elemento, los dos siguientes, los tres siguientes, etc. Por ejemplo,

  • (sumasParcialesJuzuk xs) es la lista de las sumas acumuladas de los elementos de las listas de Juzuk generadas por xs. Por ejemplo,

Comprobar con QuickChek que, para todo entero positivo n,

  • el elemento de (sumasParcialesJuzuk [1..]) en la posición (n-1) es n^4.
  • el elemento de (sumasParcialesJuzuk [1,3..]) en la posición (n-1) es n^2*(2*n^2 - 1).
  • el elemento de (sumasParcialesJuzuk [1,5..]) en la posición (n-1) es 4*n^4-3*n^2.
  • el elemento de (sumasParcialesJuzuk [2,3..]) en la posición (n-1) es n^2*(n^2+1).

Soluciones

Complemento potencial

Complemento potencial

El complemento potencial de un número entero positivo x es el menor número y tal que el producto de x por y es un una potencia perfecta. Por ejemplo,

  • el complemento potencial de 12 es 3 ya que 12 y 24 no son potencias perfectas pero 36 sí lo es;
  • el complemento potencial de 54 es 4 ya que 54, 108 y 162 no son potencias perfectas pero 216 = 6^3 sí lo es.

Definir las funciones

tales que

  • (complemento x) es el complemento potencial de x; por ejemplo,

  • (graficaComplementoPotencial n) dibuja la gráfica de los complementos potenciales de los n primeros números enteros positivos. Por ejemplo, (graficaComplementoPotencial 100) dibuja
    Complemento_potencial_100
    y (graficaComplementoPotencial 500) dibuja
    Complemento_potencial_500

Comprobar con QuickCheck que (complemento x) es menor o igual que x.

Soluciones

Terna pitagórica a partir de un lado

Una terna pitagórica con primer lado x es una terna (x,y,z) tal que x^2 + y^2 = z^2. Por ejemplo, las ternas pitagóricas con primer lado 16 son (16,12,20), (16,30,34) y (16,63,65).

Definir las funciones

tales que

  • (ternasPitgoricas x) es la lista de las ternas pitagóricas con primer lado x. Por ejemplo,

  • (mayorTernaPitagorica x) es la mayor de las ternas pitagóricas con primer lado x. Por ejemplo,

  • (graficaMayorHipotenusa n) dibuja la gráfica de las sucesión de las mayores hipotenusas de las ternas pitagóricas con primer lado x, para x entre 3 y n. Por ejemplo, (graficaMayorHipotenusa 100) dibuja
    Terna_pitagorica_a_partir_de_un_lado

Soluciones

Escalada hasta un primo

Este ejercicio está basado en el artículo La conjetura de la «escalada hasta un primo» publicado esta semana por Miguel Ángel Morales en su blog Gaussianos.

La conjetura de escalada hasta un primo trata, propuesta por John Horton Conway, es sencilla de plantear, pero primero vamos a ver qué es eso de escalar hasta un primo. Tomamos un número cualquiera y lo descomponemos en factores primos (colocados en orden ascendente). Si el número era primo, ya hemos acabado; si no era primo, construimos el número formado por los factores primos y los exponentes de los mismos colocados tal cual salen en la factorización. Con el número obtenido hacemos lo mismo que antes. La escalada finaliza cuando obtengamos un número primo. Por ejemplo, para obtener la escalada prima de 1400, como no es primo, se factoriza (obteniéndose 2^3 * 5^2 * 7) y se unen bases y exponentes (obteniéndose 23527). Con el 23527 se repite el proceso obteniéndose la factorización (7 * 3361) y su unión (73361). Como el 73361 es primo, termina la escalada. Por tanto, la escalada de 1400 es [1400,23527,73361].

La conjetura de Conway sobre «escalada hasta un primo» dice que todo número natural mayor o igual que 2 termina su escalada en un número primo.

Definir las funciones

tales que

  • (escaladaPrima n) es la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrima n) es la longitud de la escalada prima de n. Por ejemplo,

  • (longitudEscaladaPrimaAcotada n k) es el mínimo entre la longitud de la escalada prima de n y k. Por ejemplo,

  • (graficaEscalada n k) dibuja la gráfica de (longitudEscaladaPrimaAcotada x k) para x entre 2 y n. Por ejemplo, (graficaEscalada 120 15) dibuja
    Escalada_hasta_un_primo

Soluciones

Números malvados y odiosos

Un número malvado es un número natural cuya expresión en base 2 (binaria) contiene un número par de unos.

Un número odioso es un número natural cuya expresión en base 2 (binaria) contiene un número impar de unos.

Podemos representar los números malvados y odiosos mediante el siguiente tipo de dato

Definir la función

tal que (malvadoOdioso n) devuelve el tipo de número que es n. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Ordenación por frecuencia

Definir la función

tal que (ordPorFrecuencia xs) es la lista obtenidas ordenando los elementos de xs por su frecuencia, de los que aparecen más a los que aparecen menos, y los que aparecen el mismo número de veces se ordenan de manera creciente según su valor. Por ejemplo,

Soluciones

Números apocalípticos

Un número apocalíptico es aquel número natural n tal que 2^n contiene la secuencia 666.

Definir las funciones

tales que

  • (esApocaliptico n) se verifica si n es un número apocalíptico. Por ejemplo,

  • apocalipticos es la lista de los números apocalípticos. Por ejemplo,

  • (mayorNoApocalipticoMenor n) es justo el mayor número no apocalíptico menor que n. Por ejemplo,

  • (grafica n) dibuja las gráficas de los n primeros términos de la sucesión de los números apocalípticos junto con los de la sucesión a(n) = 3715+n. Por ejemplo, (grafica 3000) dibuja
    Numeros_apocalipticos_3000
    y (grafica 30000) dibuja
    Numeros_apocalipticos_30000

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Padres como sumas de hijos

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

Un árbol cumple la propiedad de la suma si el valor de cada nodo es igual a la suma de los valores de sus hijos. Por ejemplo, el árbol anterior cumple la propiedad de la suma.

Definir la función

tal que (propSuma a) se verifica si el árbol a cumple la propiedad de la suma. Por ejemplo,

Soluciones

Problema del cambio de monedas

El problema del cambio de monedas consiste en dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el número de formas de obtener y usando los tipos de monedas de ms. Por ejemplo, con monedas de 1, 5 y 10 céntimos se puede obtener 12 céntimos de 4 formas

Definir las funciones

tales que

  • (numeroCambios ms x) es el número de formas de obtener x usando los tipos de monedas de ms. Por ejemplo,

  • sucCambios es la sucesión cuyo k-ésimo término es el número de cambios de k usando monedas de 1, 2, 5 y 10 céntimos. Por ejemplo,

  • (grafica_cambios n) dibuja la gráfica de los n primeros términos de la sucesión sucCambios. Por ejemplo, (grafica_cambios 50) dibuja
    Problema_del_cambio_de_monedas

Soluciones

El problema 3SUM

El problem 3SUM consiste en dado una lista xs, decidir si xs posee tres elementos cuya suma sea cero. Por ejemplo, en [7,5,-9,5,2] se pueden elegir los elementos 7, -9 y 2 que suman 0.

Definir las funciones

tales que
+ (sols3Sum xs) son las listas de tres elementos de xs cuya suma sea cero. Por ejemplo,

  • (pb3Sum xs) se verifica si xs posee tres elementos cuya suma sea cero. Por ejemplo,

Soluciones

Factorial módulo

Definir la función

tal que (factorialMod n x) es el factorial de x módulo n. Por ejemplo,

Soluciones

Recorrido por niveles de árboles binarios

Los árboles binarios con valores en las hojas y en los nodos se definen por

Por ejemplo, el árbol

se pueden representar por

Definir la función

tal que (recorrido a) es el recorrido del árbol a por niveles desde la raíz a las hojas y de izquierda a derecha. Por ejemplo,

Soluciones

Sucesión de raíces enteras de los números primos

Definir las siguientes funciones

tales que

  • raicesEnterasPrimos es la sucesión de las raíces enteras (por defecto) de los números primos. Por ejemplo,

  • (posiciones x) es el par formado por la menor y la mayor posición de x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (frecuencia x) es el número de veces que aparece x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (grafica_raicesEnterasPrimos n) dibuja la gráfica de los n primeros términos de la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_raicesEnterasPrimos 200) dibuja
    Sucesion_de_raices_enteras_de_primos_1
  • (grafica_posicionesIniciales n) dibuja la gráfica de las menores posiciones de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_posicionesIniciales 200) dibuja
    Sucesion_de_raices_enteras_de_primos_2
  • (grafica_frecuencia n) dibuja la gráfica de las frecuencia de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_frecuencia 200) dibuja
    Sucesion_de_raices_enteras_de_primos_3

Soluciones