El teorema de Navidad de Fermat

El 25 de diciembre de 1640, en una carta a Mersenne, Fermat demostró la conjetura de Girard: todo primo de la forma 4n+1 puede expresarse de manera única como suma de dos cuadrados. Por eso es conocido como el teorema de Navidad de Fermat.

Definir las funciones

tales que

  • representaciones n es la lista de pares de números naturales (x,y) tales que n = x^2 + y^2 con x <= y. Por ejemplo.

  • primosImparesConRepresentacionUnica es la lista de los números primos impares que se pueden escribir exactamente de una manera como suma de cuadrados de pares de números naturales (x,y) con x <= y. Por ejemplo,

  • primos4nM1 es la lista de los números primos que se pueden escribir como uno más un múltiplo de 4 (es decir, que son congruentes con 1 módulo 4). Por ejemplo,

El teorema de Navidad de Fermat afirma que un número primo impar p se puede escribir exactamente de una manera como suma de dos cuadrados de números naturales p = x² + y² (con x <= y) si, y sólo si, p se puede escribir como uno más un múltiplo de 4 (es decir, que es congruente con 1 módulo 4).

Comprobar con QuickCheck el teorema de Navidad de Fermat; es decir, que para todo número n, los n-ésimos elementos de
primosImparesConRepresentacionUnica y de primos4nM1 son iguales.
Read More «El teorema de Navidad de Fermat»

Números de Pentanacci

Los números de Fibonacci se definen mediante las ecuaciones

Los primeros números de Fibonacci son

Una generalización de los anteriores son los números de Pentanacci definidos por las siguientes ecuaciones

Los primeros números de Pentanacci son

Definir las funciones

tales que

  • pentanacci n es el n-ésimo número de Pentanacci. Por ejemplo,

  • pentanaccis es la lista de los números de Pentanacci. Por ejemplo,

Read More «Números de Pentanacci»

Algoritmo de bajada para resolver un sistema triangular inferior

Un sistema de ecuaciones lineales \(Ax = b\) es triangular inferior si todos los elementos de la matriz \(A\) que están por encima de la diagonal principal son nulos; es decir, es de la forma
\begin{align}
&a_{1 1}x_1 &= b_1 \\
&a_{2 1}x_1 + a_{2 2}x_2 &= b_2 \\
&a_{3 1}x_1 + a_{3 2}x_2 + a_{3 3}x_3 &= b_3 \\
&… & \\
&a_{n 1}x_1 + a_{n 2}x_2 + a_{n 3}x_3 +…+ a_{n n}x_n &= b_n
\end{align}

El sistema es compatible si, y sólo si, el producto de los elementos de la diagonal principal es distinto de cero. En este caso, la solución se puede calcular mediante el algoritmo de bajada:
\begin{align}
x_1 &= \frac{b_1}{a_{1 1}} \\
x_2 &= \frac{b_2 – a_{2 1}x_1}{a_{2 2}} \\
x_3 &= \frac{b_3 – a_{3 1}x_1 – a_{3 2}x_2}{a_{3 3}} \\
… \\
x_n &= \frac{b_n – a_{n 1}x_1 – a_{n 2}x_2 – … – a_{n,n-1}x_{n-1}}{a_{n n}}
\end{align}

Definir la función

tal que bajada a b es la solución, mediante el algoritmo de bajada, del sistema compatible triangular superior ax = b. Por ejemplo,

Es decir, la solución del sistema
\begin{align}
2x &= 3 \\
3x + y &= 6.5 \\
4x + 2y + 5z &= 10
\end{align}
es \(x=1.5\), \(y=2\) y \(z=0\).
Read More «Algoritmo de bajada para resolver un sistema triangular inferior»

Integración por el método de los rectángulos


La integral definida de una función f entre los límites a y b puede calcularse mediante la regla del rectángulo (ver en http://bit.ly/1FDhZ1z) usando la fórmula
\[ h(f(a+\frac{h}{2}) + f(a+h+\frac{h}{2}) + f(a+2h+\frac{h}{2}) + … + f(a+nh+\frac{h}{2}))\]
con \(a+nh+\dfrac{h}{2} \leq b < a+(n+1)h+\dfrac{h}{2}\) y usando valores pequeños para \(h\).

Definir la función

tal que integral a b f h es el valor de dicha expresión. Por ejemplo, el cálculo de la integral de (f(x) = x^3) entre 0 y 1, con paso 0.01, es

Otros ejemplos son

Read More «Integración por el método de los rectángulos»

Raíces enteras

Definir la función

tal que raizEnt x n es la raíz entera n-ésima de x; es decir, el mayor número entero y tal que \(y^n \leq x\). Por ejemplo,

Comprobar con QuickCheck que para todo número natural n,

Read More «Raíces enteras»

Método de bisección para calcular raíces de una función

El método de bisección para calcular una raíz de una función en el intervalo [a,b] se basa en el teorema de Bolzano:

Si f(x) es una función continua en el intervalo \([a, b]\), y si, además, en los extremos del intervalo la función \(f\) toma valores de signo opuesto \((f(a)f(b) < 0)\), entonces existe al menos un valor \(c\) en \((a, b)\) para el que \(f(c) = 0\)».

El método para calcular una raíz de la función \(f\) en el intervalo \([a,b]\) con un error menor que \(e\) consiste en tomar el punto medio del intervalo \(c = \frac{a+b}{2}\) y considerar los siguientes casos:

  • Si \(|f(c)| < e\), hemos encontrado una aproximación del punto que anula \(f\) en el intervalo con un error aceptable.
  • Si \(f(c)\) tiene signo distinto de \(f(a)\), repetir el proceso en el intervalo \([a,c]\).
  • Si no, repetir el proceso en el intervalo \([c,b]\).

Definir la función

tal que biseccion f a b e es una aproximación del punto del intervalo [a,b] en el que se anula la función f, con un error menor que e, calculada mediante el método de la bisección. Por ejemplo,

Read More «Método de bisección para calcular raíces de una función»

Límites de sucesiones

Definir la función

tal que limite f a es el valor de f en el primer término x tal que, para todo y entre x+1 y x+100, el valor absoluto de la diferencia entre f(y) y f(x) es menor que a. Por ejemplo,

Read More «Límites de sucesiones»

Funciones inversas por el método de Newton

Definir, usando puntoCero, la función

tal que inversa g x es el valor de la inversa de g en x. Por ejemplo,

Definir, usando inversa, las funciones raizCuadrada, raizCubica, arcoseno y arcocoseno que calculen la raíz cuadrada, la raíz cúbica, el arco seno y el arco coseno, respectivamente. Por ejemplo,

Read More «Funciones inversas por el método de Newton»

Método de Newton para calcular raíces

Los ceros de una función pueden calcularse mediante el método de Newton basándose en las siguientes propiedades:

  • Si \(b\) es una aproximación para el punto cero de \(f\), entonces
    \[ b-\frac{f(b)}{f'(b)} \]
    donde \(f’\) es la derivada de \(f\), es una mejor aproximación.
  • el límite de la sucesión \(x_n\) definida por
    \begin{align}
    x_0 &= 1 \\
    x_{n+1} &= x_n-\frac{f(x_n)}{f'(x_n)}
    \end{align}
    es un cero de \(f\).

Definir la función

tal que puntoCero f es un cero de la función f calculado usando la propiedad anterior. Por ejemplo,

Read More «Método de Newton para calcular raíces»

Método de Herón para calcular la raíz cuadrada

El método de Herón para calcular la raíz cuadrada de un número se basa en las siguientes propiedades:

  • Si \(y\) es una aproximación de la raíz cuadrada de \(x\), entonces
    \[\frac{y+\frac{x}{y}}{2}\] es una aproximación mejor.
  • El límite de la sucesión definida por
    \begin{align}
    x_{0} &= 1 \\
    x_{n+1} &= \frac{x_n+\frac{x}{x_n}}{2}
    \end{align}
    es la raíz cuadrada de x.

Definir la función

tal que raiz x es la raíz cuadrada de x calculada usando la propiedad anterior con una aproximación de 0.00001 y tomando como valor inicial 1. Por ejemplo,

Read More «Método de Herón para calcular la raíz cuadrada»

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia la derecha o hacia abajo, son los siguientes:

La suma de los caminos son 37, 38, 39, 40, 34, 35, 36, 40, 41 y 32, respectivamente. El camino de máxima suma es el penúltimo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que caminoMaxSuma m es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Read More «Camino de máxima suma en una matriz»

Máxima suma de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia la derecha o hacia abajo, son los siguientes:

La suma de los caminos son 37, 38, 39, 40, 34, 35, 36, 40, 41 y 32, respectivamente. El camino de máxima suma es el penúltimo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que maximaSuma m es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia a derecha. Por ejemplo,

Read More «Máxima suma de los caminos en una matriz»

Caminos en una matriz (con programación dinámica)

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia la derecha o abajo, son los siguientes:

Definir la función

tal que caminos m es la lista de los caminos en la matriz m desde extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia la derecha o abajo. Por ejemplo,

Read More «Caminos en una matriz (con programación dinámica)»

Caminos en una retícula (con programación dinámica)

Se considera una retícula con sus posiciones numeradas, desde el vértice superior izquierdo, hacia la derecha y hacia abajo. Por ejemplo, la retícula de dimensión 3×4 se numera como sigue:

Definir la función

tal que caminos (m,n) es la lista de los caminos en la retícula de dimensión mxn desde (1,1) hasta (m,n). Por ejemplo,

Read More «Caminos en una retícula (con programación dinámica)»

La distancia Levenshtein (con programación dinámica)

La distancia de Levenshtein (o distancia de edición) es el mínimo de operaciones requeridas para transformar una cadena de caracteres en otra. Las operaciones de edición que se pueden hacer son:

  • insertar un carácter (por ejemplo, de «abc» a «abca»)
  • eliminar un carácter (por ejemplo, de «abc» a «ac»)
  • sustituir un carácter (por ejemplo, de «abc» a «adc»)

Por ejemplo, la distancia de Levenshtein entre «casa» y «calle» es de 3 porque se necesitan al menos tres ediciones elementales para cambiar uno en el otro:

Definir la función

tal que levenshtein xs ys es la distancia de Levenshtein entre xs e ys. Por ejemplo,

Read More «La distancia Levenshtein (con programación dinámica)»

Subsecuencia común máxima (con programación dinámica)

Si a una secuencia X de elementos (pongamos por ejemplo, le quitamos algunos de ellos y dejamos los que quedan en el orden en el que aparecían originalmente tenemos lo que se llama una subsecuencia de X. Por ejemplo, «aaoa» es una subsecuencia de la secuencia «amapola».

El término también se aplica cuando quitamos todos los elementos (es decir, la secuencia vacía es siempre subsecuencia de cualquier secuencia) o cuando no quitamos ninguno (lo que significa que cualquier secuencia es siempre subsecuencia de sí misma).

Dadas dos secuencias X e Y, decimos que Z es una subsecuencia de X e Y si Z es subsecuencia de X y de Y. Por ejemplo, si X = «amapola» e Y = «matamoscas», la secuencia «aaoa» es una de las subsecuencias comunes de X e Y más larga, con longitud 4, ya que no hay ninguna subsecuencia común a X e Y de longitud mayor que 4. También son subsecuencias comunes de longitud 4 «maoa» o «amoa».

Definir la función

tal que scm xs ys es una de las subsecuencias comunes de longitud máxima de xs e ys. Por ejemplo,

Read More «Subsecuencia común máxima (con programación dinámica)»

Longitud de la subsecuencia común máxima (con programación dinámica)

Si a una secuencia X de elementos (pongamos por ejemplo, caracteres) le quitamos algunos de ellos y dejamos los que quedan en el orden en el que aparecían originalmente tenemos lo que se llama una subsecuencia de X. Por ejemplo, «aaoa» es una subsecuencia de la secuencia «amapola».

El término también se aplica cuando quitamos todos los elementos (es decir, la secuencia vacía es siempre subsecuencia de cualquier secuencia) o cuando no quitamos ninguno (lo que significa que cualquier secuencia es siempre subsecuencia de sí misma).

Dadas dos secuencias X e Y, decimos que Z es una subsecuencia común de X e Y si Z es subsecuencia de X y de Y. Por ejemplo, si X = «amapola» e Y = «matamoscas», la secuencia «aaoa» es una de las subsecuencias comunes de X e Y más larga, con longitud 4, ya que no hay ninguna subsecuencia común a X e Y de longitud mayor que 4. También son subsecuencias comunes de longitud 4 «maoa» o «amoa».

Se desea encontrar la longitud de las subsecuencias comunes más largas de dos secuencias de caracteres dadas.

Definir la función

tal que longitudSCM xs ys es la longitud de la subsecuencia máxima de xs e ys. Por ejemplo,

Read More «Longitud de la subsecuencia común máxima (con programación dinámica)»

Coeficientes binomiales (con programación dinámica)

El coeficiente binomial n sobre k es el número de subconjuntos de k elementos escogidos de un conjunto con n elementos.

Definir la función

tal que binomial n k es el coeficiente binomial n sobre k. Por ejemplo,

Read More «Coeficientes binomiales (con programación dinámica)»

La función de Fibonacci por programación dinámica

Los primeros términos de la sucesión de Fibonacci son

Escribir dos definiciones (una recursiva y otra con programación dinámica) de la función

tal que fib n es el n-ésimo término de la sucesión de Fibonacci. Por ejemplo,

Comparar la eficiencia de las dos definiciones.
Read More «La función de Fibonacci por programación dinámica»

Problema de las jarras (con espacios de estados)

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en la jarra de A litros de capacidad.

Usando el procedimiento de búsqueda en anchura, definir la función

tal jarras (a,b,c) es la lista de las soluciones del problema de las jarras (a,b,c). Por ejemplo,

La interpretación [(0,0),(4,0),(1,3),(1,0),(0,1),(4,1),(2,3)] es:

  • (0,0) se inicia con las dos jarras vacías,
  • (4,0) se llena la jarra de 4 con el grifo,
  • (1,3) se llena la de 3 con la de 4,
  • (1,0) se vacía la de 3,
  • (0,1) se pasa el contenido de la primera a la segunda,
  • (4,1) se llena la primera con el grifo,
  • (2,3) se llena la segunda con la primera.

Otros ejemplos

Read More «Problema de las jarras (con espacios de estados)»

Problema de suma cero (con espacios de estados)

El problema de suma cero consiste en, dado el conjunto de enteros, encontrar sus subconjuntos no vacío cuyos elementos sumen cero.

Usando el procedimiento de búsqueda en profundidad, definir la función

tal que suma0 ns es la lista de las soluciones del problema de suma cero para ns. Por ejemplo,

Read More «Problema de suma cero (con espacios de estados)»

El problema del dominó (con espacios de estados)

Las fichas del dominó se pueden representar por pares de enteros. El problema del dominó consiste en colocar todas las fichas de una lista dada de forma que el segundo número de cada ficha coincida con el primero de la siguiente.

Usando el procedimiento de búsqueda en profundidad, definir la función

tal que domino fs es la lista de las soluciones del problema del dominó correspondiente a las fichas fs. Por ejemplo,

Soluciones

A continuación se muestran las soluciones en Haskell y las soluciones en Python.


Soluciones en Haskell


Soluciones en Python

El problema del calendario mediante búsqueda en espacio de estado

El problema del calendario, para una competición deportiva en la que se enfrentan n participantes, consiste en elaborar un calendario de forma que:

  • el campeonato dure n-1 días,
  • cada participante juegue exactamente un partido diario y
  • cada participante juegue exactamente una vez con cada adversario.

Por ejemplo, con 8 participantes una posible solución es

donde las filas indican los jugadores y las columnas los días; es decir, el elemento (i,j) indica el adversario del jugador i el día j; por ejemplo, el adversario del jugador 2 el 4ª día es el jugador 6.

Para representar el problema se define el tipo Calendario como matrices de enteros,

Usando el procedimiento de búsqueda en profundidad, definir la función

tal que calendario n son las soluciones del problema del calendario, con n participantes, mediante el patrón de búsqueda em profundidad. Por ejemplo,

Soluciones

A continuación se muestran las soluciones en Haskell y las soluciones en Python.


Soluciones en Haskell


Soluciones en Python

El problema de las fichas mediante búsqueda en espacio de estado

Para el problema de las fichas de orden (m,n) se considera un tablero con m+n+1 cuadrados consecutivos.

Inicialmente, en cada uno de los m primeros cuadrados hay una blanca, a continuación un hueco y en cada uno de los n últimos cuadrados hay una ficha verde. El objetivo consiste en tener las fichas verdes al principio y las blancas al final.

Por ejemplo, en el problema de las fichas de orden (3,3) el tablero inicial es

y el final es

Los movimientos permitidos consisten en desplazar una ficha al hueco saltando, como máximo, sobre otras dos.

Para representar el problema se definen los siguientes tipos de datos:

  • Ficha con tres constructores B, V y H que representan las fichas blanca, verde y hueco, respectivamente.

  • Tablero que es una lista de fichas que representa las fichas colocadas en el tablero.

  • Estado representa los estados del espacio de búsqueda, donde un estado es una lista de tableros [t(n), …, t(2), t(1)] tal que t(1) es el tablero inicial y para cada i (2 <= i <= n), t(i) es un sucesor de t(i-1).

  • Busqueda es un procedimiento de búsqueda

Además, se considera la heurística que para cada tablero vale la suma de piezas blancas situadas a la izquierda de cada una de las piezas verdes. Por ejemplo, para el estado

su valor es 1+2+2 = 5. La heurística de un estado es la del primero de sus tableros.

Usando los métodos de búsqueda estudiado en los ejercicios anteriores, definir la función

tal que fichas b m n es la lista de las soluciones del problema de las fichas de orden (m,n) obtenidas mediante el procedimiento de búsqueda b. Por ejemplo,

Soluciones

A continuación se muestran las soluciones en Haskell y las soluciones en Python.


Soluciones en Haskell


Soluciones en Python

El problema del granjero mediante búsqueda en espacio de estado

Un granjero está parado en un lado del río y con él tiene un una cabra y una repollo. En el río hay un barco pequeño. El desea cruzar el río con sus tres posesiones. No hay puentes y en el barco hay solamente sitio para el granjero y un artículo. Si deja la cabra con la repollo sola en un lado del río la cabra comerá la repollo. Si deja el lobo y la cabra en un lado, el lobo se comerá a la cabra. ¿Cómo puede cruzar el granjero el río con los tres artículos, sin que ninguno se coma al otro?

Para representar el problema se definen los siguientes tipos de dato:

  • Orilla con dos constructores (I y D) que representan las orillas izquierda y derecha, respectivamente.
  • Estado que es una tupla que representa en qué orilla se encuentra cada uno de los elementos (granjero, lobo, cabra, repollo). Por ejemplo, (I,D,D,I) representa que el granjero está en la izquierda, que el lobo está en la derecha, que la cabra está en la derecha y el repollo está en la izquierda.

Usando el procedimiento de búsqueda en profundidad, definir la función

tal que granjero son las soluciones del problema del granjero mediante el patrón de búsqueda en espacio de estados. Por ejemplo,

Soluciones

A continuación se muestran las soluciones en Haskell y las soluciones en Python.


Soluciones en Haskell


Soluciones en Python