La función f de ℝ en ℝ es par si, para todo x, f(-x) = f(x) y es impar si, para todo x, f(-x) -f(x).
Demostrar que el producto de dos funciones impares es par.
Para ello, completar la siguiente teoría de Lean:
import data.real.basic variables (f g : ℝ → ℝ) def par (f : ℝ → ℝ) : Prop := ∀ x, f x = f (-x) def impar (f : ℝ → ℝ) : Prop := ∀ x, f x = -f (-x) example (hf : impar f) (hg : impar g) : par (f * g) := sorry |