Un número es par si y solo si lo es su cuadrado
Demostrar con Lean4 que un número es par si y solo si lo es su cuadrado.
Para ello, completar la siguiente teoría de Lean4:
1 2 3 4 5 6 7 8 9 |
import Mathlib.Data.Int.Parity import Mathlib.Tactic open Int variable (n : ℤ) example : Even (n^2) ↔ Even n := by sorry |
1. Demostración en lenguaje natural
Sea \(n ∈ ℤ\). Tenemos que demostrar que \(n^2\) es par si y solo si n es par. Lo haremos probando las dos implicaciones.
(⟹) Lo demostraremos por contraposición. Para ello, supongamos que \(n\) no es par. Entonces, existe un \(k ∈ Z\) tal que
\[ n = 2k+1 \tag{1} \]
Luego,
\begin{align}
n^2 &= (2k+1)^2 &&\text{[por (1)]} \\
&= 4k^2+4k+1 \\
&= 2(2k(k+1))+1
\end{align}
Por tanto, \(n^2\) es impar.
(⟸) Supongamos que \(n\) es par. Entonces, existe un \(k ∈ ℤ\) tal que
\[ n = 2k \tag{2} \]
Luego,
\begin{align}
n^2 &= (2k)^2 &&\text{[por (2)]} \\
&= 2(2k^2)
\end{align}
Por tanto, \(n^2\) es par.
2. Demostraciones con Lean4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import Mathlib.Data.Int.Parity import Mathlib.Tactic open Int variable (n : ℤ) -- 1ª demostración -- =============== example : Even (n^2) ↔ Even n := by constructor . -- ⊢ Even (n ^ 2) → Even n contrapose -- ⊢ ¬Even n → ¬Even (n ^ 2) intro h -- h : ¬Even n -- ⊢ ¬Even (n ^ 2) rw [←odd_iff_not_even] at * -- h : Odd n -- ⊢ Odd (n ^ 2) cases' h with k hk -- k : ℤ -- hk : n = 2 * k + 1 use 2*k*(k+1) -- ⊢ n ^ 2 = 2 * (2 * k * (k + 1)) + 1 calc n^2 = (2*k+1)^2 := by rw [hk] _ = 4*k^2+4*k+1 := by ring _ = 2*(2*k*(k+1))+1 := by ring . -- ⊢ Even n → Even (n ^ 2) intro h -- h : Even n -- ⊢ Even (n ^ 2) cases' h with k hk -- k : ℤ -- hk : n = k + k use 2*k^2 -- ⊢ n ^ 2 = 2 * k ^ 2 + 2 * k ^ 2 calc n^2 = (k + k)^2 := by rw [hk] _ = 2*k^2 + 2*k^2 := by ring -- 2ª demostración -- =============== example : Even (n^2) ↔ Even n := by constructor . -- ⊢ Even (n ^ 2) → Even n contrapose -- ⊢ ¬Even n → ¬Even (n ^ 2) rw [←odd_iff_not_even] -- ⊢ Odd n → ¬Even (n ^ 2) rw [←odd_iff_not_even] -- ⊢ Odd n → Odd (n ^ 2) unfold Odd -- ⊢ (∃ k, n = 2 * k + 1) → ∃ k, n ^ 2 = 2 * k + 1 intro h -- h : ∃ k, n = 2 * k + 1 -- ⊢ ∃ k, n ^ 2 = 2 * k + 1 cases' h with k hk -- k : ℤ -- hk : n = 2 * k + 1 use 2*k*(k+1) -- ⊢ n ^ 2 = 2 * (2 * k * (k + 1)) + 1 rw [hk] -- ⊢ (2 * k + 1) ^ 2 = 2 * (2 * k * (k + 1)) + 1 ring . -- ⊢ Even n → Even (n ^ 2) unfold Even -- ⊢ (∃ r, n = r + r) → ∃ r, n ^ 2 = r + r intro h -- h : ∃ r, n = r + r -- ⊢ ∃ r, n ^ 2 = r + r cases' h with k hk -- k : ℤ -- hk : n = k + k use 2*k^2 -- ⊢ n ^ 2 = 2 * k ^ 2 + 2 * k ^ 2 rw [hk] -- ⊢ (k + k) ^ 2 = 2 * k ^ 2 + 2 * k ^ 2 ring -- 3ª demostración -- =============== example : Even (n^2) ↔ Even n := by constructor . -- ⊢ Even (n ^ 2) → Even n contrapose -- ⊢ ¬Even n → ¬Even (n ^ 2) rw [←odd_iff_not_even] -- ⊢ Odd n → ¬Even (n ^ 2) rw [←odd_iff_not_even] -- ⊢ Odd n → Odd (n ^ 2) rintro ⟨k, rfl⟩ -- k : ℤ -- ⊢ Odd ((2 * k + 1) ^ 2) use 2*k*(k+1) -- ⊢ (2 * k + 1) ^ 2 = 2 * (2 * k * (k + 1)) + 1 ring . -- ⊢ Even n → Even (n ^ 2) rintro ⟨k, rfl⟩ -- k : ℤ -- ⊢ Even ((k + k) ^ 2) use 2*k^2 -- ⊢ (k + k) ^ 2 = 2 * k ^ 2 + 2 * k ^ 2 ring -- 4ª demostración -- =============== example : Even (n^2) ↔ Even n := calc Even (n^2) ↔ Even (n * n) := iff_of_eq (congrArg Even (sq n)) _ ↔ (Even n ∨ Even n) := even_mul _ ↔ Even n := or_self_iff (Even n) -- 5ª demostración -- =============== example : Even (n^2) ↔ Even n := calc Even (n^2) ↔ Even (n * n) := by ring_nf _ ↔ (Even n ∨ Even n) := even_mul _ ↔ Even n := by simp -- Lemas usados -- ============ -- variable (a b : Prop) -- variable (m : ℤ) -- #check (even_mul : Even (m * n) ↔ Even m ∨ Even n) -- #check (iff_of_eq : a = b → (a ↔ b)) -- #check (odd_iff_not_even : Odd n ↔ ¬Even n) -- #check (or_self_iff a : a ∨ a ↔ a) |
Se puede interactuar con las demostraciones anteriores en Lean 4 Web.
3. Demostraciones con Isabelle/HOL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
theory Un_numero_es_par_syss_lo_es_su_cuadrado imports Main begin (* 1ª demostración *) lemma fixes n :: int shows "even (n⇧2) ⟷ even n" proof (rule iffI) assume "even (n⇧2)" show "even n" proof (rule ccontr) assume "odd n" then obtain k where "n = 2*k+1" by (rule oddE) then have "n⇧2 = 2*(2*k*(k+1))+1" proof - have "n⇧2 = (2*k+1)⇧2" by (simp add: ‹n = 2 * k + 1›) also have "… = 4*k⇧2+4*k+1" by algebra also have "… = 2*(2*k*(k+1))+1" by algebra finally show "n⇧2 = 2*(2*k*(k+1))+1" . qed then have "∃k'. n⇧2 = 2*k'+1" by (rule exI) then have "odd (n⇧2)" by fastforce then show False using ‹even (n⇧2)› by blast qed next assume "even n" then obtain k where "n = 2*k" by (rule evenE) then have "n⇧2 = 2*(2*k⇧2)" by simp then show "even (n⇧2)" by simp qed (* 2ª demostración *) lemma fixes n :: int shows "even (n⇧2) ⟷ even n" proof assume "even (n⇧2)" show "even n" proof (rule ccontr) assume "odd n" then obtain k where "n = 2*k+1" by (rule oddE) then have "n⇧2 = 2*(2*k*(k+1))+1" by algebra then have "odd (n⇧2)" by simp then show False using ‹even (n⇧2)› by blast qed next assume "even n" then obtain k where "n = 2*k" by (rule evenE) then have "n⇧2 = 2*(2*k⇧2)" by simp then show "even (n⇧2)" by simp qed (* 3ª demostración *) lemma fixes n :: int shows "even (n⇧2) ⟷ even n" proof - have "even (n⇧2) = (even n ∧ (0::nat) < 2)" by (simp only: even_power) also have "… = (even n ∧ True)" by (simp only: less_numeral_simps) also have "… = even n" by (simp only: HOL.simp_thms(21)) finally show "even (n⇧2) ⟷ even n" by this qed (* 4ª demostración *) lemma fixes n :: int shows "even (n⇧2) ⟷ even n" proof - have "even (n⇧2) = (even n ∧ (0::nat) < 2)" by (simp only: even_power) also have "… = even n" by simp finally show "even (n⇧2) ⟷ even n" . qed (* 5ª demostración *) lemma fixes n :: int shows "even (n⇧2) ⟷ even n" by simp end |