Emparejamiento de árboles

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (emparejaArboles f a1 a2) es el árbol obtenido aplicando la función f a los elementos de los árboles a1 y a2 que se encuentran en la misma posición. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Números de Perrin

Los números de Perrin se definen por la elación de recurrencia

con los valores iniciales

Definir la sucesión

cuyos elementos son los números de Perrin. Por ejemplo,

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

Problema de las puertas

Un hotel dispone de n habitaciones y n camareros. Los camareros tienen la costumbre de cambiar de estado las puertas (es decir, abrir las cerradas y cerrar las abiertas). El proceso es el siguiente:

  • Inicialmente todas las puertas están cerradas.
  • El primer camarero cambia de estado las puertas de todas las habitaciones.
  • El segundo cambia de estado de las puertas de las habitaciones pares.
  • El tercero cambia de estado todas las puertas que son múltiplos de 3.
  • El cuarto cambia de estado todas las puertas que son múltiplos de 4
  • Así hasta que ha pasado el último camarero.

Por ejemplo, para n = 5

Los estados de las puertas se representan por el siguiente tipo de datos

Definir la función

tal que (final n) es la lista de los estados de las n puertas después de que hayan pasado los n camareros. Por ejemplo,

Soluciones

[schedule on=’2020-06-05′ at=»06:00″]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

Definir las funciones

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,

  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,

  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.»

Hermann Weyl.

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Soluciones

Triángulo de Bell

El triágulo de Bell es el triángulo numérico, cuya primera fila es [1] y en cada fila, el primer elemento es el último de la fila anterior y el elemento en la posición j se obtiene sumando el elemento anterior de su misma fila y de la fila anterior. Sus primeras filas son

Definir la función

tal que trianguloDeBell es la lista con las filas de dicho triángulo. Por ejemplo

Comprobar con QuickCheck que los números que aparecen en la primera columna del triángulo coinciden con los números de Bell; es decir, el primer elemento de la n-ésima fila es el n-ésimo número de Bell.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«La ciencia es lo que entendemos lo suficientemente bien como para explicarle a una computadora. El arte es todo lo demás.»

Donald Knuth.

Suma de números de Fibonacci con índice impar

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comienza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

Definir la función

tal que (sumaFibsIndiceImpar n) es la suma de los n primeros términos de la sucesión de Fibonacci no índice impar; es decir,

Por ejemplo,

En los ejemplos anteriores se observa que

Comprobar con QuickCheck que (sumaFibsIndiceImpar n) es F(2n); es decir, el 2n-ésimo número de Fibonacci

Soluciones

Referencia

Pensamiento

El corazón del poeta, tan rico en sonoridades, es casi un insulto a la afonía cordial de la masa.

Antonio Machado

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

Definir las siguientes funciones

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,

  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,

  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,

  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,

  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,

  • (derivada xs) es la derivada de la serie xs. Por ejemplo,

  • (integral xs) es la integral de la serie xs. Por ejemplo,

  • expx es la serie de la función exponencial. Por ejemplo,

Soluciones

Pensamiento

Ni mármol duro y eterno,
ni música ni pintura,
sino palabra en el tiempo.

Antonio Machado

Problema de las puertas

Un hotel dispone de n habitaciones y n camareros. Los camareros tienen la costumbre de cambiar de estado las puertas (es decir, abrir las cerradas y cerrar las abiertas). El proceso es el siguiente:

  • Inicialmente todas las puertas están cerradas.
  • El primer camarero cambia de estado las puertas de todas las habitaciones.
  • El segundo cambia de estado de las puertas de las habitaciones pares.
  • El tercero cambia de estado todas las puertas que son múltiplos de 3.
  • El cuarto cambia de estado todas las puertas que son múltiplos de 4
  • Así hasta que ha pasado el último camarero.

Por ejemplo, para n = 5

Los estados de las puertas se representan por el siguiente tipo de datos

Definir la función

tal que (final n) es la lista de los estados de las n puertas después de que hayan pasado los n camareros. Por ejemplo,

Soluciones

Pensamiento

… cuánto exilio en la presencia cabe.

Antonio Machado

Distribución de diferencias de dígitos consecutivos de pi

Usando la librería Data.Number.CReal, que se instala con

se pueden calcular el número pi con la precisión que se desee. Por ejemplo,

importa la librería y calcula el número pi con 60 decimales.

La distribución de las diferencias de los dígitos consecutivos para los 18 primeros n dígitos de pi se calcula como sigue: los primeros 18 dígitos de pi son

Las diferencias de sus elementos consecutivos es

y la distribución de sus frecuencias en el intervalo [-9,9] es

es decir, el desde el -9 a -5 no aparecen, el -4 aparece 3 veces, el -2 aparece 2 veces y así sucesivamente.

Definir las funciones

tales que

  • (distribucionDDCpi n) es la distribución de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi. Por ejemplo,

  • (graficas ns f) dibuja en el fichero f las gráficas de las distribuciones de las diferencias de los dígitos consecutivos para los primeros n dígitos de pi, para n en ns. Por ejemplo, al evaluar (graficas [100,250..4000] «distribucionDDCpi.png» se escribe en el fichero «distribucionDDCpi.png» la siguiente gráfica

Soluciones

Pensamiento

Doy consejo, a fuer de viejo:
nunca sigas mi consejo.

Antonio Machado

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

Definir las funciones

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,

  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,

  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

Pensamiento

Tengo a mis amigos
en mi soledad;
cuando estoy con ellos
¡qué lejos están!

Antonio Machado

Cálculo de pi mediante la serie de Nilakantha

Una serie infinita para el cálculo de pi, publicada por Nilakantha en el siglo XV, es

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi obtenido sumando los n primeros términos de la serie de Nilakantha. Por ejemplo,

  • (tabla f ns) escribe en el fichero f las n-ésimas aproximaciones de pi, donde n toma los valores de la lista ns, junto con sus errores. Por ejemplo, al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

al evaluar la expresión

hace que el contenido del fichero «AproximacionesPi.txt» sea

Soluciones

Pensamiento

Bueno es saber que los vasos
nos sirven para beber;
lo malo es que no sabemos
para que sirve la sed.

Antonio Machado

Impares en filas del triángulo de Pascal

El triángulo de Pascal es un triángulo de números

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

Definir las funciones

tales que

  • imparesPascal es la lista de los elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,

  • nImparesPascal es la lista del número de elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,

  • (grafica_nImparesPascal n) dibuja la gráfica de los n primeros términos de nImparesPascal. Por ejemplo, (grafica_nImparesPascal 50) dibuja

y (grafica_nImparesPascal 100) dibuja

Comprobar con QuickCheck que todos los elementos de nImparesPascal son potencias de dos.

Soluciones