Límites de sucesiones

El límite de una sucesión, con una aproximación a y una amplitud n, es el primer término x de la sucesión tal que el valor absoluto de x y cualquiera de sus n siguentes elementos es menor que a.

Definir la función

tal que (limite xs a n) es el límite de xs xon aproximación a y amplitud n. Por ejemplo,

Soluciones

Pensamiento

De diez cabezas, nueve
embisten y una piensa.
Nunca extrañéis que un bruto
se descuerne luchando por la idea.

Antonio Machado

Impares en filas del triángulo de Pascal

El triángulo de Pascal es un triángulo de números

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

Definir las funciones

tales que

  • imparesPascal es la lista de los elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,

  • nImparesPascal es la lista del número de elementos impares en cada una de las filas del triángulo de Pascal. Por ejemplo,

  • (grafica_nImparesPascal n) dibuja la gráfica de los n primeros términos de nImparesPascal. Por ejemplo, (grafica_nImparesPascal 50) dibuja

y (grafica_nImparesPascal 100) dibuja

Comprobar con QuickCheck que todos los elementos de nImparesPascal son potencias de dos.

Soluciones

Pensamiento

De lo que llaman los hombres
virtud, justicia y bondad,
una mitad es envidia,
y la otra no es caridad.

Antonio Machado

Números primos en pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir las funciones

tales que

  • (nOcurrenciasPrimosEnPi n k) es la lista de longitud n cuyo i-ésimo elemento es el número de ocurrencias del i-ésimo número primo en los k primeros decimales del número pi. Por ejemplo,

ya que los 20 primeros decimales de pi son 14159265358979323846 y en ellos ocurre el 2 dos veces, el 3 ocurre 3 veces, el 5 ocurre 3 veces y el 7 ocurre 1 vez. Otros ejemplos son

  • (graficaPrimosEnPi n k) dibuja la gráfica del número de ocurrencias de los n primeros números primos en los k primeros dígitos de pi. Por ejemplo, (graficaPrimosEnPi 10 (10^4)) dibuja

(graficaPrimosEnPi 10 (10^6)) dibuja

y (graficaPrimosEnPi 50 (10^5)) dibuja

Soluciones

Pensamiento

Al borde del sendero un día nos sentamos.
Ya nuestra vida es tiempo, y nuestra sola cuita
son las desesperantes posturas que tomamos
para aguardar … Mas ella no faltará a la cita.

Antonio Machado

Sucesión triangular

La sucesión triangular es la obtenida concatenando las listas [1], [1,2], [1,2,3], [1,2,3,4], …. Sus primeros términos son 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, …

Definir las funciones

tales que

  • sucTriangular es la lista de los términos de la sucesión triangular. Por ejemplo,

  • (terminoSucTriangular n) es el término n-ésimo de la sucesión triangular. Por ejemplo,

  • (graficaSucTriangular n) dibuja la gráfica de los n primeros términos de la sucesión triangular. Por ejemplo, (graficaSucTriangular 300) dibuja

Soluciones

Pensamiento

Nadie debe asustarse de lo que piensa, aunque su pensar aparezca en pugna con las leyes más elementales de la lógica. Porque todo ha de ser pensado por alguien, y el mayor desatino puede ser un punto de vista de lo real.

Antonio Machado

Mayor prefijo con suma acotada

Definir la función

tal que (mayorPrefijoAcotado xs y) es el mayor prefijo de la lista de los números enteros positivos xs cuya suma es menor o igual que y. Por ejemplo,

Soluciones

Pensamiento

Sed hombres de mal gusto. Yo os aconsejo el mal gusto para combatir los excesos de la moda.

Antonio Machado

Menor contenedor de primos

El n-ésimo menor contenenedor de primos es el menor número que contiene como subcadenas los primeros n primos. Por ejemplo, el 6º menor contenedor de primos es 113257 ya que es el menor que contiene como subcadenas los 6 primeros primos (2, 3, 5, 7, 11 y 13).

Definir la función

tal que (menorContenedor n) es el n-ésimo menor contenenedor de primos. Por ejemplo,

Soluciones

Pensamiento

¡Ya hay hombres activos!
Soñaba la charca
con sus mosquitos.

Antonio Machado

Distancia de Hamming

La distancia de Hamming entre dos listas es el número de posiciones en que los correspondientes elementos son distintos. Por ejemplo, la distancia de Hamming entre «roma» y «loba» es 2 (porque hay 2 posiciones en las que los elementos correspondientes son distintos: la 1ª y la 3ª).

Definir la función

tal que (distancia xs ys) es la distancia de Hamming entre xs e ys. Por ejemplo,

Comprobar con QuickCheck si la distancia de Hamming tiene la siguiente propiedad

y, en el caso de que no se verifique, modificar ligeramente la propiedad para obtener una condición necesaria y suficiente de distancia(xs,ys) = 0.

Soluciones

Pensamiento

En mi soledad/
he visto cosas muy claras,
que no son verdad.

Antonio Machado

Número medio

Un número medio es número natural que es igual a la media aritmética de las permutaciones de sus dígitos. Por ejemplo, 370 es un número medio ya que las permutaciones de sus dígitos es 073, 037, 307, 370, 703 y 730 cuya media es 2220/6 que es igual a 370.

Definir las siguientes funciones

tales que

  • (numeroMedio n) se verifica si n es un número medio. Por ejemplo,

  • densidades es la lista cuyo elemento n-ésimo (empezando a contar en 1) es la densidad de números medios en el intervalo [1,n]; es decir, la cantidad de números medios menores o iguales que n dividida por n. Por ejemplo,

  • (graficaDensidadNumeroMedio n) dibuja la gráfica de las densidades de
    los intervalos [1,k] para k desde 1 hasta n. Por ejemplo, (graficaDensidadNumeroMedio 100) dibuja

    y (graficaDensidadNumeroMedio 1000) dibuja

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Números tetranacci

Los números tetranacci son una generalización de los números de Fibonacci definidos por

Los primeros números tetranacci son

Definir las funciones

tales que

  • (tetranacci n) es el n-ésimo número tetranacci. Por ejemplo,

  • (graficaTetranacci n) dibuja la gráfica de los cocientes de n primeros pares de número tetranacci. Por ejemplo, (graficaTetranacci 300) dibuja
    Numeros_tetranacci_200

Soluciones

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,

  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

Particiones primas

Una partición prima de un número natural n es un conjunto de primos cuya suma es n. Por ejemplo, el número 7 tiene 7 particiones primas ya que

Definir la función

tal que (particiones n) es el comjunto de las particiones primas de n. Por ejemplo,

Soluciones

Matrices de Pascal

El triángulo de Pascal es un triángulo de números

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

La matriz de Pascal es la matriz cuyas filas son los elementos de la
correspondiente fila del triángulo de Pascal completadas con ceros. Por ejemplo, la matriz de Pascal de orden 6 es

Definir la función

tal que (matrizPascal n) es la matriz de Pascal de orden n. Por ejemplo,

Soluciones

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…] Por ejemplo,

  • triangulo es el triángulo de Gilbreath. Por ejemplo,

  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,

Soluciones

Períodos de Fibonacci

Los primeros términos de la sucesión de Fibonacci son

Al calcular sus restos módulo 3 se obtiene

Se observa que es periódica y su período es

Definir las funciones

tales que

  • (fibsMod n) es la lista de los términos de la sucesión de Fibonacci módulo n. Por ejemplo,

  • (periodoFibMod n) es la parte perioica de la sucesión de Fibonacci módulo n. Por ejemplo,

  • longPeriodosFibMod es la sucesión de las longitudes de los períodos de las sucesiones de Fibonacci módulo n, para n > 0. Por ejemplo,

  • (graficaLongPeriodosFibMod n) dibuja la gráfica de los n primeros términos de la sucesión longPeriodosFibMod. Por ejemplo, (graficaLongPeriodosFibMod n) dibuja
    Periodos_de_Fibonacci 300

Soluciones

Celdas interiores de una retícula

Las celdas de una retícula cuadrada se numeran consecutivamente. Por ejemplo, la numeración de la retícula cuadrada de lado 4 es

Los números de sus celdas interiores son 6,7,10,11.

Definir la función

tal que (interiores n) es la lista de los números de las celdas interiores de la retícula cuadrada de lado n. Por ejemplo,

Comprobar con QuickCheck que el número de celdas interiores de la retícula cuadrada de lado n, con n > 1, es (n-2)^2.

Soluciones

Dígitos iniciales

Definir las funciones

tales que

  • digitosIniciales es la lista de los dígitos iniciales de los números naturales. Por ejemplo,

  • (graficaDigitosIniciales n) dibuja la gráfica de los primeros n términos de la sucesión digitosIniciales. Por ejemplo, (graficaDigitosIniciales 100) dibuja
    Digitos_iniciales_100
    y (graficaDigitosIniciales 1000) dibuja
    Digitos_iniciales_1000

Soluciones

Sucesión de Lichtenberg

La sucesión de Lichtenberg esta formada por la representación decimal de los números binarios de la sucesión de dígitos 0 y 1 alternados Los primeros términos de ambas sucesiones son

Definir las funciones

tales que

  • lichtenberg es la lista cuyos elementos son los términos de la sucesión de Lichtenberg. Por ejemplo,

  • (graficaLichtenberg n) dibuja la gráfica del número de dígitos de los n primeros términos de la sucesión de Lichtenberg. Por ejemlo, (graficaLichtenberg 100) dibuja
    Sucesion_de_Lichtenberg

Comprobar con QuickCheck que todos los términos de la sucesión de Lichtenberg, a partir del 4º, son números compuestos.

Soluciones

Sucesión de dígitos 0 y 1 alternados

Los primeros términos de la sucesión de los dígitos 0 y 1 alternados son

Definir la lista

tal que sus elementos son los términos de la sucesión de los dígitos 0 y 1 alternados. Por ejemplo,

Soluciones

Fractal hexagonal

Escribir, usando CodeWorld, un programa para dibujar el fractal hexagonal que se muestra en la siguiente animación
Fractal_hexagonal

Las 4 primeras fases de la animación son

  • Fase 0:
    Fractal_hexagonal_0
  • Fase 1:
    Fractal_hexagonal_1
  • Fase 2:
    Fractal_hexagonal_2
  • Fase 3:
    Fractal_hexagonal_3

Nota: Este ejercicio ha sido propuesto por Agustín Martín Aguera.

Soluciones

Problema del cambio de monedas

El problema del cambio de monedas consiste en dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el número de formas de obtener y usando los tipos de monedas de ms. Por ejemplo, con monedas de 1, 5 y 10 céntimos se puede obtener 12 céntimos de 4 formas

Definir las funciones

tales que

  • (numeroCambios ms x) es el número de formas de obtener x usando los tipos de monedas de ms. Por ejemplo,

  • sucCambios es la sucesión cuyo k-ésimo término es el número de cambios de k usando monedas de 1, 2, 5 y 10 céntimos. Por ejemplo,

  • (grafica_cambios n) dibuja la gráfica de los n primeros términos de la sucesión sucCambios. Por ejemplo, (grafica_cambios 50) dibuja
    Problema_del_cambio_de_monedas

Soluciones

Sucesión de raíces enteras de los números primos

Definir las siguientes funciones

tales que

  • raicesEnterasPrimos es la sucesión de las raíces enteras (por defecto) de los números primos. Por ejemplo,

  • (posiciones x) es el par formado por la menor y la mayor posición de x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (frecuencia x) es el número de veces que aparece x en la sucesión de las raíces enteras de los números primos. Por ejemplo,

  • (grafica_raicesEnterasPrimos n) dibuja la gráfica de los n primeros términos de la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_raicesEnterasPrimos 200) dibuja
    Sucesion_de_raices_enteras_de_primos_1
  • (grafica_posicionesIniciales n) dibuja la gráfica de las menores posiciones de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_posicionesIniciales 200) dibuja
    Sucesion_de_raices_enteras_de_primos_2
  • (grafica_frecuencia n) dibuja la gráfica de las frecuencia de los n primeros números en la sucesión de las raíces enteras de los números primos. Por ejemplo, (grafica_frecuencia 200) dibuja
    Sucesion_de_raices_enteras_de_primos_3

Soluciones

Rotaciones divisibles por 8

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816 de las que 3 son divisibles por 8 (928160, 160928 y 92816).

Definir la función

tal que (nRotacionesDivisiblesPor8 x) es el número de rotaciones de x divisibles por 8. Por ejemplo,

Soluciones

Máximo de las rotaciones restringidas

Rotar un número a la iquierda significa pasar su primer dígito al final. Por ejemplo, rotando a la izquierda el 56789 se obtiene 67895.

Las rotaciones restringidas del número 56789 se obtienen como se indica a continución:

  • Se inicia con el propio número: 56789
  • El anterior se rota a la izquierda y se obtiene el 67895.
  • Del anterior se fija el primer dígito y se rota a la iquierda los otros. Se obtiene 68957.
  • Del anterior se fijan los 2 primeros dígito y se rota a la iquierda los otros. Se obtiene 68579.
  • Del anterior se fijan los 3 primeros dígito y se rota a la iquierda los otros. Se obtiene 68597.

El proceso ha terminado ya que conservando los cuatro primeros queda sólo un dígito que al girar es él mismo. Por tanto, la sucesión de las rotaciones restringidas de 56789 es

y su mayor elemento es 68957.

Definir la función

tal que (maxRotaciones n) es el máximo de las rotaciones restringidas del número n. Por ejemplo,

Soluciones

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Números como sumas de primos consecutivos

El número 311 se puede escribir de 5 formas distintas como suma de 1 o más primos consecutivos

el número 41 se puede escribir de 4 formas

y el número 14 no se puede escribir como suma de primos consecutivos.

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de uno o más números primos consecutivos. Por ejemplo,

Soluciones

Distancias entre primos consecutivos

Los 15 primeros números primos son

Las distancias entre los elementos consecutivos son

La distribución de las distancias es

(es decir, el 1 aparece una vez, el 2 aparece 6 veces, etc.) La frecuencia de las distancias es

(es decir, el 1 aparece el 7.142857%, el 2 el 42.857143% etc.)

Definir las funciones

tales que

  • (cuentaDistancias n) es la distribución de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (frecuenciasDistancias n) es la frecuencia de distancias entre los n primeros primos consecutivos. Por ejemplo,

  • (graficas ns) dibuja las gráficas de (frecuenciasDistancias k) para k en ns. Por ejemplo, (graficas [10,20,30]) dibuja
    Distancias_entre_primos_consecutivos1
    (graficas [1000,2000,3000]) dibuja
    Distancias_entre_primos_consecutivos2
    y (graficas [100000,200000,300000]) dibuja
    Distancias_entre_primos_consecutivos3
  • (distanciasMasFrecuentes n) es la lista de las distancias más frecuentes entre los elementos consecutivos de la lista de los n primeros primos. Por ejemplo,

Comprobar con QuickCheck si para todo n > 160 se verifica que (distanciasMasFrecuentes n) es [6].

Soluciones

Rotaciones divisibles por 4

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816. De las cuales, las divisibles por 4 son 928160, 816092, 160928 y 92816.

Definir la función

tal que (nRotacionesDivisibles n) es el número de rotaciones del número n divisibles por 4. Por ejemplo,

Soluciones

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Nota: Este ejercicio ha sido propuesto por Manuel Herrera.

Soluciones

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Nota: Este ejercicio ha sido propuesto por Enrique Naranjo.

Soluciones