Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de dígitos de pi y su distribución

Se pueden generar los dígitos de Pi, como se explica en el artículo Unbounded spigot algorithms for the digits of pi c0on la función digitosPi definida por

Por ejemplo,

La distribución de los primeros 25 dígitos de pi es [0,2,3,5,3,3,3,1,2,3] ya que el 0 no aparece, el 1 ocurre 2 veces, el 3 ocurre 3 veces, el 4 ocurre 5 veces, …

Usando digitosPi, definir las siguientes funciones

tales que

  • (distribucionDigitosPi n) es la distribución de los n primeros dígitos de pi. Por ejemplo,

  • (frecuenciaDigitosPi n) es la frecuencia de los n primeros dígitos de pi. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,

  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La diferencia entre los matemáticos y los físicos es que después de que los físicos prueban un gran resultado piensan que es fantástico, pero después de que los matemáticos prueban un gran resultado piensan que es trivial.»

Lucien Szpiro.

La conjetura de Gilbreath

Partiendo de los 5 primeros números primos y calculando el valor absoluto de la diferencia de cada dos números consecutivos hasta quedarse con un único número se obtiene la siguiente tabla:

Se observa que todas las filas, salvo la inicial, comienzan con el número 1.

Repitiendo el proceso pero empezando con los 8 primeros números primos se obtiene la siguiente tabla:

Se observa que, de nuevo, todas las filas, salvo la inicial, comienza con el número 1.

La conjetura de Gilbreath afirma que si escribimos la sucesión de números primos completa y después construimos las correspondientes sucesiones formadas por el valor absoluto de la resta de cada pareja de números consecutivos, entonces todas esas filas que obtenemos comienzan siempre por 1.

El objetivo de este ejercicio es comprobar experimentalmente dicha conjetura.

Para la representación, usaremos la simétrica de la que hemos comentado anteriormente; es decir,

en la que la primera columna son los números primos y el elemento de la fila i y columna j (con i, j > 1) es el valor absoluto de la diferencia de los elementos (i,j-1) e (i-1,j-1).

Definir las siguientes funciones

tales que

  • (siguiente x ys) es la línea siguiente de la ys que empieza por x en la tabla de Gilbreath; es decir, si ys es [y1,y2,…,yn], entonces (siguiente x ys) es [x,|y1-x|,|y2-|y1-x||,…]. Por ejemplo,

  • triangulo es el triángulo de Gilbreath. Por ejemplo,

  • (conjeturaGilbreath n) se verifica si se cumple la conjetura de Gilbreath para los n primeros números primos; es decir, en el triángulo de Gilbreath cuya primera columna son los n primeros números primos, todas las filas a partir de la segunda terminan en 1. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«La simplicidad es la última sofisticación.»

Leonardo da Vinci.