Menu Close

Etiqueta: take

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

   aproximacionPi :: Int -> Double
   errorPi :: Double -> Int

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,
     aproximacionPi  5  ==  3.140331156954753
     aproximacionPi 10  ==  3.1415914215112
     aproximacionPi 15  ==  3.141592652386592
     aproximacionPi 20  ==  3.1415926535886207
     aproximacionPi 25  ==  3.141592653589795
  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,
     errorPi 0.1        ==  2
     errorPi 0.01       ==  4
     errorPi 0.001      ==  6
     errorPi 0.0001     ==  7
     errorPi 1e-4       ==  7
     errorPi 1e-14      ==  24
     pi                 ==  3.141592653589793
     aproximacionPi 24  ==  3.1415926535897913

Soluciones

-- 1ª definición de aproximacionPi
aproximacionPi :: Int -> Double
aproximacionPi n = product [2 / aux x | x <- [0..n]]
  where
    aux 0 = 1
    aux 1 = sqrt 2
    aux n = sqrt (2 + aux (n-1))
 
-- 2ª definición de aproximacionPi
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = product [2/x | x <- 1 : xs] 
  where xs = take n $ iterate (\x -> sqrt (2+x)) (sqrt 2)
 
-- 3ª definición de aproximaxionPi
aproximacionPi3 :: Int -> Double
aproximacionPi3 n =  product (2 : take n (map (2/) xs))
  where xs = sqrt 2 : [sqrt (2 + x) | x <- xs]
 
-- 1ª definición de errorPi
errorPi :: Double -> Int
errorPi x = head [n | n <- [1..]
                    , abs (pi - aproximacionPi n) < x]
 
-- 2ª definición de errorPi
errorPi2 :: Double -> Int
errorPi2 x = until aceptable (+1) 1
  where aceptable n = abs (pi - aproximacionPi n) < x

Pensamiento

El tiempo que la barba me platea,
cavó mis ojos y agrandó mi frente,
va siendo en mi recuerdo transparente,
y mientras más al fondo, más clarea.

Antonio Machado

Mayor producto de n dígitos consecutivos de un número

Definir la función

   mayorProducto :: Int -> Integer -> Integer

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

   mayorProducto 2 325                  ==  10
   mayorProducto 5 11111                ==  1
   mayorProducto 5 113111               ==  3
   mayorProducto 5 110111               ==  0
   mayorProducto 5 10151112             ==  10
   mayorProducto 5 101511124            ==  10
   mayorProducto 5 (product [1..1000])  ==  41472

Nota: Este ejercicio está basado en el problema 8 del Proyecto Euler

Soluciones

import Data.List (inits, tails)
import Data.Char (digitToInt)
 
-- 1ª solución
-- ===========
 
mayorProducto :: Int -> Integer -> Integer
mayorProducto n x =
  maximum [product xs | xs <- segmentos n (digitos x)]
 
-- (digitos x) es la lista de las digitos del número x. Por ejemplo, 
--    digitos 325  ==  [3,2,5]
digitos :: Integer -> [Integer]
digitos x = map (toInteger . digitToInt) (show x)
 
-- (segmentos n xs) es la lista de los segmentos de longitud n de la
-- lista xs. Por ejemplo,
--    segmentos 2 [3,5,4,6]  ==  [[3,5],[5,4],[4,6]]
segmentos :: Int -> [Integer] -> [[Integer]]
segmentos n xs = take (length xs - n + 1) (map (take n) (tails xs))
 
-- 2ª solución
-- ===========
 
mayorProducto2 :: Int -> Integer -> Integer
mayorProducto2 n x = maximum (aux ns)
    where ns     = [read [d] | d <- show x]
          aux xs | length xs < n = []
                 | otherwise     = product (take n xs) : aux (tail xs)
 
-- 3ª solución
-- ===========
 
mayorProducto3 :: Int -> Integer -> Integer
mayorProducto3 n = maximum
                 . map (product . take n)
                 . filter ((>=n) . length) 
                 . tails
                 . digitos
 
-- 4ª solución
-- ===========
 
mayorProducto4 :: Int -> Integer -> Integer
mayorProducto4 n = maximum  
                 . map (product . map (fromIntegral . digitToInt)) 
                 . filter ((==n) . length) 
                 . concatMap inits
                 . tails 
                 . show
 
-- Comparación de eficiencia
-- =========================
 
--    λ> mayorProducto 5 (product [1..500])
--    28224
--    (0.01 secs, 1,645,256 bytes)
--    λ> mayorProducto2 5 (product [1..500])
--    28224
--    (0.03 secs, 5,848,416 bytes)
--    λ> mayorProducto3 5 (product [1..500])
--    28224
--    (0.03 secs, 1,510,640 bytes)
--    λ> mayorProducto4 5 (product [1..500])
--    28224
--    (1.85 secs, 10,932,551,216 bytes)
--    
--    λ> mayorProducto 5 (product [1..7000])
--    46656
--    (0.10 secs, 68,590,808 bytes)
--    λ> mayorProducto2 5 (product [1..7000])
--    46656
--    (1.63 secs, 157,031,432 bytes)
--    λ> mayorProducto3 5 (product [1..7000])
--    46656
--    (1.55 secs, 65,727,176 bytes)

Pensamiento

“El control de la complejidad es la esencia de la programación.” ~ B.W. Kernigan

Mayor producto de n dígitos consecutivos de un número

Definir la función

   mayorProducto :: Int -> Integer -> Integer

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

   mayorProducto 2 325                  ==  10
   mayorProducto 5 11111                ==  1
   mayorProducto 5 113111               ==  3
   mayorProducto 5 110111               ==  0
   mayorProducto 5 10151112             ==  10
   mayorProducto 5 101511124            ==  10
   mayorProducto 5 (product [1..1000])  ==  41472

Soluciones

import Test.QuickCheck
import Data.List (inits, tails)
import Data.Char (digitToInt)
 
-- 1ª solución
-- ===========
 
mayorProducto1 :: Int -> Integer -> Integer
mayorProducto1 n x =
  maximum [product xs | xs <- segmentos n (cifras x)]
 
-- (cifras x) es la lista de las cifras del número x. Por ejemplo, 
--    cifras 325  ==  [3,2,5]
cifras :: Integer -> [Integer]
cifras x = map (toInteger . digitToInt) (show x)
 
-- (segmentos n xs) es la lista de los segmentos de longitud n de la
-- lista xs. Por ejemplo,
--    segmentos 2 [3,5,4,6]  ==  [[3,5],[5,4],[4,6]]
segmentos :: Int -> [Integer] -> [[Integer]]
segmentos n xs = take (length xs - n + 1) (map (take n) (tails xs))
 
-- 2ª solución
-- ===========
 
mayorProducto2 :: Int -> Integer -> Integer
mayorProducto2 n x = maximum (aux ns)
    where ns     = [read [d] | d <- show x]
          aux xs | length xs < n = []
                 | otherwise     = product (take n xs) : aux (tail xs)
 
-- 3ª solución
-- ===========
 
mayorProducto3 :: Int -> Integer -> Integer
mayorProducto3 n = maximum
                 . map (product . take n)
                 . filter ((>=n) . length) 
                 . tails
                 . cifras
 
-- 4ª solución
-- ===========
 
mayorProducto4 :: Int -> Integer -> Integer
mayorProducto4 n = maximum  
                 . map (product . map (fromIntegral . digitToInt)) 
                 . filter ((==n) . length) 
                 . concatMap inits
                 . tails 
                 . show
 
-- ---------------------------------------------------------------------
-- Comparación de soluciones                                          --
-- ---------------------------------------------------------------------
 
-- Tiempo (en segundos) del cálculo de (mayorProducto 5 (product [1..n]))
-- 
--    | Def | 500  | 1000 | 5000 | 10000 
--    | 1   | 0.01 | 0.02 | 0.06 | 0.11
--    | 2   | 0.01 | 0.03 | 0.80 | 3.98
--    | 3   | 0.01 | 0.03 | 0.82 | 4.13
--    | 4   | 2.77 |      |      |

Pensamiento

A las palabras de amor
les sienta bien su poquito
de exageración.

Antonio Machado

Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período “abababab” es “ab” ya que “abababab” se obtiene repitiendo tres veces la lista “ab”.

Definir la función

   periodo :: Eq a => [a] -> [a]

tal que (periodo xs) es el período de xs. Por ejemplo,

   periodo "ababab"      ==  "ab"
   periodo "buenobueno"  ==  "bueno"
   periodo "oooooo"      ==  "o"
   periodo "sevilla"     ==  "sevilla"

Soluciones

import Data.List (isPrefixOf, inits)
 
-- 1ª solución
-- ===========
 
periodo1 :: Eq a => [a] -> [a]
periodo1 xs = take n xs
    where l = length xs
          n = head [m | m <- divisores l, 
                        concat (replicate (l `div` m) (take m xs)) == xs]
 
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
--    divisores 96  ==  [1,2,3,4,6,8,12,16,24,32,48,96]
divisores :: Int -> [Int]
divisores n = [x | x <- [1..n], n `mod` x == 0]
 
-- 2ª solución
-- ===========
 
periodo2 :: Eq a => [a] -> [a]
periodo2 xs = take n xs
    where l = length xs
          n = head [m | m <- divisores l, 
                        xs `isPrefixOf` cycle (take m xs)]

Pensamiento

Esta luz de Sevilla … Es el palacio
donde nací, con su rumor de fuente.

Antonio Machado

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

   reparto :: Int -> [Int] -> [(Int,Int)]

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

   ghci> reparto 7 [340000,280000,160000,60000,15000]
   [(1,3),(2,3),(3,1)]
   ghci> reparto 21 [391000,311000,184000,73000,27000,12000,2000]
   [(1,9),(2,7),(3,4),(4,1)]

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

import Data.List (sort, group)
 
-- Para los ejemplos que siguen, se usará la siguiente ditribución de
-- votos entre 5 partidos.
ejVotos :: [Int]
ejVotos = [340000,280000,160000,60000,15000]
 
-- 1ª solución
-- ===========
 
reparto :: Int -> [Int] -> [(Int,Int)]
reparto n vs = 
  [(x,1 + length xs) | (x:xs) <- group (sort (repartoAux n vs))] 
 
-- (repartoAux n vs) es el número de los partidos, cuyos votos son vs, que
-- obtienen los n escaños. Por ejemplo,
--    ghci> repartoAux 7 ejVotos
--    [1,2,1,3,2,1,2]
repartoAux :: Int -> [Int] -> [Int]
repartoAux n vs = map snd (repartoAux' n vs)
 
-- (repartoAux' n vs) es la lista formada por los n restos mayores
-- correspondientes a la lista de votos vs. Por ejemplo,
--    ghci> repartoAux' 7 ejVotos
--    [(340000,1),(280000,2),(170000,1),(160000,3),(140000,2),(113333,1),
--     (93333,2)]
repartoAux' :: Int -> [Int] -> [(Int,Int)]
repartoAux' n vs = 
  take n (reverse (sort (concatMap (restos n) (votosPartidos vs))))
 
-- (votosPartidos vs) es la lista con los pares formados por los votos y
-- el número de cada partido. Por ejemplo, 
--    ghci> votosPartidos ejVotos
--    [(340000,1),(280000,2),(160000,3),(60000,4),(15000,5)]
votosPartidos :: [Int] -> [(Int,Int)]
votosPartidos vs = zip vs [1..]
 
-- (restos n (x,i)) es la lista obtenidas dividiendo n entre 1, 2,..., n.
-- Por ejemplo, 
--    ghci> restos 5 (340000,1)
--    [(340000,1),(170000,1),(113333,1),(85000,1),(68000,1)]
restos :: Int -> (Int,Int) -> [(Int,Int)]
restos n (x,i) = [(x `div` k,i) | k <- [1..n]]
 
-- 2ª solución
-- ===========
 
reparto2 :: Int -> [Int] -> [(Int,Int)]
reparto2 n xs = 
  ( map (\x -> (head x, length x))  
  . group  
  . sort  
  . map snd  
  . take n  
  . reverse  
  . sort
  ) [(x `div` i, p) | (x,p) <- zip xs [1..], i <- [1..n]]

Pensamiento

Sus cantares llevan
agua de remanso,
que parece quieta.
Y que no lo está;
mas no tiene prisa
por ir a la mar.

Antonio Machado