Árbol de divisores

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

El árbol de los divisores de un número x es el árbol que tiene como raíz el número x y cada nodo tiene como hijos sus divisores propios maximales. Por ejemplo, el árbol de divisores de 30 es

Usando el tipo de dato

el árbol anterior se representa por

Definir las funciones

tales que

  • (arbolDivisores x) es el árbol de los divisores del número x. Por ejemplo,

  • (nOcurrenciasArbolDivisores x y) es el número de veces que aparece el número x en el árbol de los divisores del número y. Por ejemplo,

Soluciones

Pensamiento

«¿Dónde está la utilidad
de nuestras utilidades?
Volvamos a la verdad:
vanidad de vanidades.»

Antonio Machado

Divisores propios maximales

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

Definir las funciones

tales que

  • (divisoresPropiosMaximales x) es la lista de los divisores propios maximales de x. Por ejemplo,

  • (nDivisoresPropiosMaximales x) es el número de divisores propios maximales de x. Por ejemplo,

Soluciones

Pensamiento

«Moneda que está en la mano
quizá se deba guardar;
la monedita del alma
se pierde si no se da.»

Antonio Machado

Elemento del árbol binario completo según su posición

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (elementoEnPosicion ms) es el elemento en la posición ms. Por ejemplo,

Soluciones

Pensamiento

Las más hondas palabras
del sabio nos enseñan
lo que el silbar del viento cuando sopla
o el sonar de las aguas cuando ruedan.

Antonio Machado

Posiciones en árboles binarios completos

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (posicionDeElemento n) es la posición del elemento n en el árbol binario completo. Por ejemplo,

Soluciones

Pensamiento

El ojo que ves no es
ojo porque tú lo veas;
es ojo porque te ve.

Antonio Machado

Números colinas

Se dice que un número natural n es una colina si su primer dígito es igual a su último dígito, los primeros dígitos son estrictamente creciente hasta llegar al máximo, el máximo se puede repetir y los dígitos desde el máximo al final son estrictamente decrecientes.

Definir la función

tal que (esColina n) se verifica si n es un número colina. Por ejemplo,

Soluciones

Referencia

Basado en el problema Is this number a hill number? de Code Golf

Pensamiento

Si me tengo que morir
poco me importa aprender.
Y si no puedo saber,
poco me importa vivir.

Antonio Machado

Número de parejas

Definir la función

tal que (nParejas xs) es el número de parejas de elementos iguales en xs. Por ejemplo,

En el primer ejemplos las parejas son (1,1), (1,1) y (2,2). En el segundo ejemplo, las parejas son (1,1) y (2,2).

Comprobar con QuickCheck que para toda lista de enteros xs, el número de parejas de xs es igual que el número de parejas de la inversa de xs.

Soluciones

Pensamiento

Toda la imaginería
que no ha brotado del río,
barata bisutería.

Antonio Machado

Capicúas productos de dos números de dos dígitos

El número 9009 es capicúa y es producto de dos números de dos dígitos, pues 9009 = 91×99.

Definir la lista

cuyos elementos son los números capicúas que son producto de 2 números de dos dígitos. Por ejemplo,

Soluciones

Pensamiento

Ayudadme a comprender lo que os digo, y os lo explicaré más despacio.

Antonio Machado

Último dígito no nulo del factorial

El factorial de 7 es

por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Soluciones

Pensamiento

Incierto es, lo porvenir. ¿Quién sabe lo que va a pasar? Pero incierto es también lo pretérito. ¿Quién sabe lo que ha pasado? De suerte que ni el porvenir está escrito en ninguna parte, ni el pasado tampoco.

Antonio Machado

Número medio

Un número medio es número natural que es igual a la media aritmética de las permutaciones de sus dígitos. Por ejemplo, 370 es un número medio ya que las permutaciones de sus dígitos es 073, 037, 307, 370, 703 y 730 cuya media es 2220/6 que es igual a 370.

Definir las siguientes funciones

tales que

  • (numeroMedio n) se verifica si n es un número medio. Por ejemplo,

  • densidades es la lista cuyo elemento n-ésimo (empezando a contar en 1) es la densidad de números medios en el intervalo [1,n]; es decir, la cantidad de números medios menores o iguales que n dividida por n. Por ejemplo,

  • (graficaDensidadNumeroMedio n) dibuja la gráfica de las densidades de
    los intervalos [1,k] para k desde 1 hasta n. Por ejemplo, (graficaDensidadNumeroMedio 100) dibuja

    y (graficaDensidadNumeroMedio 1000) dibuja

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Recorrido en ZigZag

El recorrido en ZigZag de una matriz consiste en pasar de la primera fila hasta la última, de izquierda a derecha en las filas impares y de derecha a izquierda en las filas pares, como se indica en la figura.

Definir la función

tal que (recorridoZigZag m) es la lista con los elementos de la matriz m cuando se recorre esta en ZigZag. Por ejemplo,

Soluciones

Problema de las 3 jarras

En el problema de las tres jarras (A,B,C) se dispone de tres jarras de capacidades A, B y C litros con A > B > C y A par. Inicialmente la jarra mayor está llena y las otras dos vacías. Queremos, trasvasando adecuadamente el líquido entre las jarras, repartir por igual el contenido inicial entre las dos jarras mayores. Por ejemplo, para el problema (8,5,3) el contenido inicial es (8,0,0) y el final es (4,4,0).

Definir las funciones

tales que

  • (solucionesTresJarras p) es la lista de soluciones del problema de las tres jarras p. Por ejemplo,

  • (tresJarras p) es una solución del problema de las tres jarras p con el mínimo mínimo número de trasvase, si p tiene solución y Nothing, en caso contrario. Por ejemplo,

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en alguna de las dos jarras.

Definir la función

tal (jarras (a,b,c)) es una solución del problema de las jarras (a,b,c) con el mínimo número de movimientos, si el problema tiene solución y Nothing, en caso contrario. Por ejemplo,

La interpretación de la solución anterior es

Otros ejemplos:

Soluciones

Número de triangulaciones de un polígono

Una triangulación de un polígono es una división del área en un conjunto de triángulos, de forma que la unión de todos ellos es igual al polígono original, y cualquier par de triángulos es disjunto o comparte únicamente un vértice o un lado. En el caso de polígonos convexos, la cantidad de triangulaciones posibles depende únicamente del número de vértices del polígono.

Si llamamos T(n) al número de triangulaciones de un polígono de n vértices, se verifica la siguiente relación de recurrencia:

Definir la función

tal que (numeroTriangulaciones n) es el número de triangulaciones de un polígono convexo de n vértices. Por ejemplo,

Soluciones

Subconjuntos con suma dada

Sea S un conjunto finito de números enteros positivos y n un número natural. El problema consiste en calcular los subconjuntos de S cuya suma es n.

Definir la función

tal que (subconjuntosSuma xs n) es la lista de los subconjuntos de xs cuya suma es n. Por ejemplo,

Soluciones

Notas de evaluación acumulada

La evaluación acumulada, las notas se calculan recursivamente con la siguiente función

donde E(k) es la nota del examen k. Por ejemplo, si las notas de los exámenes son [3,7,6,3] entonces las acumuladas son [3.0,7.0,6.4,4.4]

Las notas e los exámenes se encuentran en ficheros CSV con los valores separados por comas. Cada línea representa la nota de un alumno, el primer valor es el identificador del alumno y los restantes son sus notas. Por ejemplo, el contenido de examenes.csv es

Definir las funciones

tales que

  • (acumuladas xs) es la lista de las notas acumuladas (redondeadas con un decimal) de los notas de los exámenes xs. Por ejemplo,

  • (notasAcumuladas f1 f2) que escriba en el fichero f2 las notas acumuladas correspondientes a las notas de los exámenes del fichero f1. Por ejemplo, al evaluar

escribe en el fichero acumuladas.csv

Soluciones

Reducción de opuestos

Se considera el siguiente procedimiento de reducción de listas: busca un par de elementos consecutivos iguales pero con signos opuestos, se eliminan dichos elementos y se continúa el proceso hasta que no se encuentren pares de elementos consecutivos iguales pero con signos opuestos. Por ejemplo, la reducción de [-2,1,-1,2,3,4,-3] es

Definir la función

tal que (reducida xs) es la lista obtenida aplicando a xs el de eliminación de pares de elementos consecutivos opuestos. Por ejemplo,

Soluciones

Decidir si existe un subconjunto con suma dada

Sea S un conjunto finito de números naturales y m un número natural. El problema consiste en determinar si existe un subconjunto de S cuya suma es m. Por ejemplo, si S = [3,34,4,12,5,2] y m = 9, existe un subconjunto de S, [4,5], cuya suma es 9. En cambio, no hay ningún subconjunto de S que sume 13.

Definir la función

tal que (existeSubSuma xs m) se verifica si existe algún subconjunto de xs que sume m. Por ejemplo,

Soluciones

Conjetura de Goldbach

Una forma de la conjetura de Golbach afirma que todo entero mayor que 1 se puede escribir como la suma de uno, dos o tres números primos.

Si se define el índice de Goldbach de n > 1 como la mínima cantidad de primos necesarios para que su suma sea n, entonces la conjetura de Goldbach afirma que todos los índices de Goldbach de los enteros mayores que 1 son menores que 4.

Definir las siguientes funciones

tales que

  • (indiceGoldbach n) es el índice de Goldbach de n. Por ejemplo,

  • (graficaGoldbach n) dibuja la gráfica de los índices de Goldbach de los números entre 2 y n. Por ejemplo, (graficaGoldbach 150) dibuja
    Conjetura_de_Goldbach_150

Comprobar con QuickCheck la conjetura de Goldbach anterior.

Soluciones

Particiones primas

Una partición prima de un número natural n es un conjunto de primos cuya suma es n. Por ejemplo, el número 7 tiene 7 particiones primas ya que

Definir la función

tal que (particiones n) es el comjunto de las particiones primas de n. Por ejemplo,

Soluciones

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

Definir la función

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

Soluciones

Nodos con máxima suma de hijos

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (nodosSumaMaxima a) es la lista de los nodos del árbol a cuyos hijos tienen máxima suma. Por ejemplo,

Soluciones

Números trimórficos

Un número trimórfico es un número cuyo cubo termina en dicho número. Por ejemplo, 24 es trimórfico ya que 24^3 = 13824 termina en 24.

Para cada entero positivo n, la densidad de trimórficos hasta n es el cociente entre la cantidad de números trimórficos menores o iguales que n y el número n. Por ejemplo, hasta 10 hay 6 números trimórficos (0, 1, 4, 5, 6 y 9); por tanto, la densidad hasta 10 es 6/10 = 0.6.

Definir las funciones

tal que

  • trimorficos es la lista de los números trimórficos. Por ejemplo,

  • (densidadTrimorficos n) es la densidad de trimórficos hasta n. Por ejemplo,

Soluciones

Recorrido de árboles en espiral

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (espiral x) es la lista de los nodos del árbol x recorridos en espiral; es decir, la raíz de x, los nodos del primer nivel de izquierda a derecha, los nodos del segundo nivel de derecha a izquierda y así sucesivamente. Por ejemplo,

Soluciones

Números somirp

Un número omirp es un número primo que forma un primo distinto al invertir el orden de sus dígitos.

Definir las funciones

tales que

  • (esOmirp n) se verifica si n es un número omirp. Por ejemplo,

  • omirps es la lista de los números omirps. Por ejemplo,

  • (nOmirpsIntermedios n) es la cantidad de números omirps entre el n-ésimo número omirp y el obtenido al invertir el orden de sus dígitos. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Ofertas 3 por 2

En una tienda tienen la «oferta 3 por 2» de forma que cada cliente que elige 3 artículos obtiene el más barato de forma gratuita. Por ejemplo, si los precios de los artículos elegidos por un cliente son 10, 2, 4, 5 euros pagará 19 euros si agrupa los artículos en (10,2,4) y (5) o pagará 17 si lo agupa en (5,10,4) y (2).

Definir la función

tal que (minimoConOferta xs) es lo mínimo que pagará el cliente si los precios de la compra son xs; es decir, lo que pagará agrupando los artículos de forma óptima para aplicar la oferta 3 por 2. Por ejemplo,

Soluciones

De hexadecimal a decimal

El sistema hexadecimal es el sistema de numeración posicional que tiene como base el 16.

En principio, dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan. El conjunto de símbolos es el siguiente: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. En ocasiones se emplean letras minúsculas en lugar de mayúsculas. Se debe notar que A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15.

Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos, quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo, el valor decimal del número hexadecimal 3E0A es

Definir la función

tal que (hexAdec cs) es el valor decimal del número hexadecimal representado meiante la cadena cs. Por ejemplo,

Soluciones

Reconocimiento de recorridos correctos

Se usará la misma representación del ejercicio anterior para las subidas y bajadas en el autobús; es decir, una lista de pares donde los primeros elementos es el número de viajeros que suben y los segundo es el de los que bajan.

Un recorrido es correcto si en cada bajada tanto el número de viajeros que suben como los que bajan son positivos, el número de viajeros en el autobús no puede ser mayor que su capacidad y el número de viajeros que bajan no puede ser mayor que el número de viajeros en el autobús. Se supone que en la primera parada el autobús no tiene viajeros.

Definir la función

tal que (recorridoCorrecto n ps) se verifica si ps es un recorrido correcto en un autobús cuya capacidad es n. Por ejemplo,

el segundo ejemplo es incorrecto porque en la última para se supera la capacidad del autobús; el tercero, porque en la primera para no hay viajeros en el autobús que se puedan bajar y el cuarto, porque en la 2ª parada el autobús tiene 3 viajeros por lo que es imposible que se bajen 7.

Soluciones

Ordenación valle

La ordenación valle de la lista [79,35,54,19,35,25,12] es la lista [79,35,25,12,19,35,54] ya que es una permutación de la primera y cumple las siguientes condiciones

  • se compone de una parte decreciente ([79,35,25]), un elemento mínimo (12) y una parte creciente ([19,35,54]);
  • las dos partes tienen el mismo número de elementos;
  • cada elemento de la primera parte es mayor o igual que su correspondiente en la segunda parte; es decir. 79 ≥ 54, 35 ≥ 35 y 25 ≥ 19;
  • además, la diferencia entre dichos elementos es la menor posible.

En el caso, de que la longitud de la lista sea par, la división tiene sólo dos partes (sin diferenciar el menor elemento). Por ejemplo, el valle de [79,35,54,19,35,25] es [79,35,25,19,35,54].

Definir la función

tal que (valle xs) es la ordenación valle de la lista xs. Por ejemplo,

En el último ejemplo se muestra cómo la última condición descarta la posibilidad de que la lista [17,17,15,14,8,1,4,4,5,7,7] también sea solución ya que aunque se cumplen se cumplen las tres primeras condiciones la diferencia entre los elementos correspondientes es mayor que en la solución; por ejemplo, 17 – 7 > 17 – 17.

Soluciones