Menu Close

Etiqueta: reverse

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

   2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3
   2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3
   2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3
   2 + 3 + 3 + 3 + 3 + 3 + 3 + 3

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

   minimoSumandosDigitos        :: Integer -> Integer
   graficaMinimoSumandosDigitos :: Integer -> IO ()

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,
     minimoSumandosDigitos 23    ==  8
     minimoSumandosDigitos 232   ==  78
     minimoSumandosDigitos 2323  ==  775
     map minimoSumandosDigitos [10..20] == [10,11,6,5,5,3,6,5,4,3,10]
  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

import Test.QuickCheck
import Graphics.Gnuplot.Simple
import Data.List (nub, genericLength, sort)
import Data.Array (array, (!))
 
minimoSumandosDigitos :: Integer -> Integer
minimoSumandosDigitos n =
  minimoSumandos (digitos n) n
 
-- (digitos n) es el conjunto de los dígitos no nulos de n. Por ejemplo,
--    digitos 2032  ==  [2,3]
digitos :: Integer -> [Integer]
digitos n =
  nub [read [c] | c <- show n, c /= '0']
 
-- (minimoSumandos xs n) es el menor número de elementos de la lista de
-- enteros positivos xs (con posibles repeticiones) cuya suma es n. Por
-- ejemplo, 
--    minimoSumandos [7,2,4] 11  ==  2
minimoSumandos :: [Integer] -> Integer -> Integer
minimoSumandos xs n =
  minimum (map genericLength (sumas xs n))
 
-- (sumas xs n) es la lista de elementos de la lista de enteros
-- positivos xs (con posibles repeticiones) cuya suma es n. Por ejemplo,  
--    sumas [7,2,4] 11  ==  [[7,2,2],[7,4]]
sumas :: [Integer] -> Integer -> [[Integer]]
sumas [] 0 = [[]]
sumas [] _ = []
sumas (x:xs) n
  | x <= n    = map (x:) (sumas (x:xs) (n-x)) ++ sumas xs n
  | otherwise = sumas xs n
 
-- 2ª solución
-- ===========
 
minimoSumandosDigitos2 :: Integer -> Integer
minimoSumandosDigitos2 n = aux n 
  where
    aux 0 = 0
    aux k = 1 + minimo [aux (k - x) | x <- ds,  k >= x]
    ds    = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- 3ª solución
-- ===========
 
minimoSumandosDigitos3 :: Integer -> Integer
minimoSumandosDigitos3 n = v ! n
  where
    v   = array (0,n) [(i,f i) | i <- [0..n]]
    f 0 = 0
    f k = 1 + minimo [v ! (k - x) | x <- ds, k >= x]
    ds       = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_minimoSumandosDigitos :: Positive Integer -> Bool
prop_minimoSumandosDigitos (Positive n) =
  r1 == r2 && r2 == r3
  where
    r1 = minimoSumandosDigitos n
    r2 = minimoSumandosDigitos n
    r3 = minimoSumandosDigitos n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=9}) prop_minimoSumandosDigitos
--    +++ OK, passed 100 tests.
 
-- Definición de graficaMinimoSumandosDigitos
-- ==========================================
 
graficaMinimoSumandosDigitos :: Integer -> IO ()
graficaMinimoSumandosDigitos n =
  plotList [ Key Nothing
           -- , PNG "Numero_como_suma_de_sus_digitos.png"
           ]
           [minimoSumandosDigitos k | k <- [0..n-1]]

Sucesión duplicadora

Para cada entero positivo n, existe una única sucesión que empieza en 1, termina en n y en la que cada uno de sus elementos es el doble de su anterior o el doble más uno. Dicha sucesión se llama la sucesión duplicadora de n. Por ejemplo, la sucesión duplicadora de 13 es [1, 3, 6, 13], ya que

    3 = 2*1 +1
    6 = 2*3
   13 = 2*6 +1

Definir la función

   duplicadora :: Integer -> [Integer]

tal que (duplicadora n) es la sucesión duplicadora de n. Por ejemplo,

   duplicadora 13                   ==  [1,3,6,13]
   duplicadora 17                   ==  [1,2,4,8,17]
   length (duplicadora (10^40000))  ==  132878

Soluciones

-- 1ª definición
duplicadora :: Integer -> [Integer]
duplicadora x =
  reverse (takeWhile (>=1) (iterate (`div` 2) x))
 
-- 2ª definición
duplicadora2 :: Integer -> [Integer]
duplicadora2  =
  reverse . takeWhile (>=1) . iterate (`div` 2)

Camino de máxima suma en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El camino de máxima suma es el segundo (1, 7, 12, 8, 4, 9) que tiene una suma de 41.

Definir la función

   caminoMaxSuma :: Matrix Int -> [Int]

tal que (caminoMaxSuma m) es un camino de máxima suma en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminoMaxSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [1,7,12,8,4,9]
   λ> sum (caminoMaxSuma (fromList 800 800 [1..]))
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
caminoMaxSuma1 :: Matrix Int -> [Int]
caminoMaxSuma1 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos1 m
        k  = maximum (map sum cs)
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
caminoMaxSuma2 :: Matrix Int -> [Int]
caminoMaxSuma2 m =
  head [c | c <- cs, sum c == k] 
  where cs = caminos2 m
        k  = maximum (map sum cs)
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definición (con programación dinámica)
-- =========================================
 
caminoMaxSuma3 :: Matrix Int -> [Int]
caminoMaxSuma3 m = reverse (snd (q ! (nf,nc)))
  where nf = nrows m
        nc = ncols m
        q  = caminoMaxSumaAux m
 
caminoMaxSumaAux :: Matrix Int -> Matrix (Int,[Int])
caminoMaxSumaAux m = q 
  where
    nf = nrows m
    nc = ncols m
    q  = matrix nf nc f
      where
        f (1,1) = (m!(1,1),[m!(1,1)])
        f (1,j) = (k + m!(1,j), m!(1,j):xs)
          where (k,xs) = q!(1,j-1)
        f (i,1) = (k + m!(i,1), m!(i,1):xs)
          where (k,xs) = q!(i-1,1)        
        f (i,j) | k1 > k2   = (k1 + m!(i,j), m!(i,j):xs)
                | otherwise = (k2 + m!(i,j), m!(i,j):ys)
          where (k1,xs) = q!(i,j-1)
                (k2,ys) = q!(i-1,j)
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminoMaxSuma1 (fromList 11 11 [1..]))
--    21
--    (10.00 secs, 1,510,120,328 bytes)
--    λ> length (caminoMaxSuma2 (fromList 11 11 [1..]))
--    21
--    (3.84 secs, 745,918,544 bytes)
--    λ> length (caminoMaxSuma3 (fromList 11 11 [1..]))
--    21
--    (0.01 secs, 0 bytes)

Máximo de las sumas de los caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Las sumas de los caminos son 32, 41, 36, 40, 40, 35, 39, 34, 38 y 37, respectivamente. El máximo de las suma de los caminos es 41.

Definir la función

   maximaSuma :: Matrix Int -> Int

tal que (maximaSuma m) es el máximo de las sumas de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> maximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   41
   λ> maximaSuma (fromList 800 800 [1..])
   766721999

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición
-- =============
 
maximaSuma1 :: Matrix Int -> Int
maximaSuma1 =
  maximum . map sum . caminos1
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 m =
  map reverse (caminos1Aux m (nf,nc))
  where nf = nrows m
        nc = ncols m
 
-- (caminos1Aux p x) es la lista de los caminos invertidos en la matriz p
-- desde la posición (1,1) hasta la posición x. Por ejemplo,
caminos1Aux :: Matrix Int -> (Int,Int) -> [[Int]]
caminos1Aux m (1,1) = [[m!(1,1)]]
caminos1Aux m (1,j) = [[m!(1,k) | k <- [j,j-1..1]]]
caminos1Aux m (i,1) = [[m!(k,1) | k <- [i,i-1..1]]]
caminos1Aux m (i,j) = [m!(i,j) : xs
                      | xs <- caminos1Aux m (i,j-1) ++
                              caminos1Aux m (i-1,j)]
 
-- 2ª definición
-- =============
 
maximaSuma2 :: Matrix Int -> Int
maximaSuma2 =
  maximum . map sum . caminos2
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 m =
  map reverse (matrizCaminos m ! (nrows m, ncols m))
 
matrizCaminos :: Matrix Int -> Matrix [[Int]]
matrizCaminos m = q
  where
    q = matrix (nrows m) (ncols m) f
    f (1,y) = [[m!(1,z) | z <- [y,y-1..1]]]
    f (x,1) = [[m!(z,1) | z <- [x,x-1..1]]]
    f (x,y) = [m!(x,y) : cs | cs <- q!(x-1,y) ++ q!(x,y-1)]  
 
-- 3ª definicion (por recursión, sin calcular el camino)
-- =====================================================
 
maximaSuma3 :: Matrix Int -> Int
maximaSuma3 m = maximaSuma3Aux m (nf,nc)
  where nf = nrows m
        nc = ncols m
 
-- (maximaSuma3Aux m p) calcula la suma máxima de un camino hasta la
-- posición p. Por ejemplo,
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,4)
--    41
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (3,3)
--    32
--    λ> maximaSuma3Aux (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) (2,4)
--    31
maximaSuma3Aux :: Matrix Int -> (Int,Int) -> Int
maximaSuma3Aux m (1,1) = m ! (1,1)
maximaSuma3Aux m (1,j) = maximaSuma3Aux m (1,j-1) + m ! (1,j)
maximaSuma3Aux m (i,1) = maximaSuma3Aux m (i-1,1) + m ! (i,1)
maximaSuma3Aux m (i,j) =
  max (maximaSuma3Aux m (i,j-1)) (maximaSuma3Aux m (i-1,j)) + m ! (i,j)
 
-- 4ª solución (mediante programación dinámica)
-- ============================================
 
maximaSuma4 :: Matrix Int -> Int
maximaSuma4 m = q ! (nf,nc)
  where nf = nrows m
        nc = ncols m
        q  = matrizMaximaSuma m
 
-- (matrizMaximaSuma m) es la matriz donde en cada posición p se
-- encuentra el máxima de las sumas de los caminos desde (1,1) a p en la
-- matriz m. Por ejemplo,   
--    λ> matrizMaximaSuma (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]]) 
--    (  1  7 18 20 )
--    (  8 20 23 31 )
--    ( 11 28 32 41 )
matrizMaximaSuma :: Matrix Int -> Matrix Int
matrizMaximaSuma m = q 
  where nf = nrows m
        nc = ncols m
        q  = matrix nf nc f
          where  f (1,1) = m ! (1,1)
                 f (1,j) = q ! (1,j-1) + m ! (1,j)
                 f (i,1) = q ! (i-1,1) + m ! (i,1)
                 f (i,j) = max (q ! (i,j-1)) (q ! (i-1,j)) + m ! (i,j)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> maximaSuma1 (fromList 8 8 [1..])
--    659
--    (0.11 secs, 31,853,136 bytes)
--    λ> maximaSuma1a (fromList 8 8 [1..])
--    659
--    (0.09 secs, 19,952,640 bytes)
-- 
--    λ> maximaSuma1 (fromList 10 10 [1..])
--    1324
--    (2.25 secs, 349,722,744 bytes)
--    λ> maximaSuma2 (fromList 10 10 [1..])
--    1324
--    (0.76 secs, 151,019,296 bytes)
--    
--    λ> maximaSuma2 (fromList 11 11 [1..])
--    1781
--    (3.02 secs, 545,659,632 bytes)
--    λ> maximaSuma3 (fromList 11 11 [1..])
--    1781
--    (1.57 secs, 210,124,912 bytes)
--    
--    λ> maximaSuma3 (fromList 12 12 [1..])
--    2333
--    (5.60 secs, 810,739,032 bytes)
--    λ> maximaSuma4 (fromList 12 12 [1..])
--    2333
--    (0.01 secs, 23,154,776 bytes)

Caminos en una matriz

Los caminos desde el extremo superior izquierdo (posición (1,1)) hasta el extremo inferior derecho (posición (3,4)) en la matriz

   (  1  6 11  2 )
   (  7 12  3  8 )
   (  3  8  4  9 )

moviéndose en cada paso una casilla hacia abajo o hacia la derecha, son los siguientes:

   1, 7,  3, 8, 4, 9
   1, 7, 12, 8, 4, 9
   1, 7, 12, 3, 4, 9
   1, 7, 12, 3, 8, 9
   1, 6, 12, 8, 4, 9
   1, 6, 12, 3, 4, 9
   1, 6, 12, 3, 8, 9
   1, 6, 11, 3, 4, 9
   1, 6, 11, 3, 8, 9
   1, 6, 11, 2, 8, 9

Definir la función

   caminos :: Matrix Int -> [[Int]]

tal que (caminos m) es la lista de los caminos en la matriz m desde el extremo superior izquierdo hasta el extremo inferior derecho, moviéndose en cada paso una casilla hacia abajo o hacia la derecha. Por ejemplo,

   λ> caminos (fromLists [[1,6,11,2],[7,12,3,8],[3,8,4,9]])
   [[1,7, 3,8,4,9],
    [1,7,12,8,4,9],
    [1,7,12,3,4,9],
    [1,7,12,3,8,9],
    [1,6,12,8,4,9],
    [1,6,12,3,4,9],
    [1,6,12,3,8,9],
    [1,6,11,3,4,9],
    [1,6,11,3,8,9],
    [1,6,11,2,8,9]]
   λ> length (caminos (fromList 12 13 [1..]))
   1352078

Nota: Se recomienda usar programación dinámica.

Soluciones

import Data.Matrix
 
-- 1ª definición de caminos (por recursión)
-- ----------------------------------------
 
caminos1 :: Matrix Int -> [[Int]]
caminos1 a = aux (1,1)
  where
    aux (i,j)
      | i == m           = [[a!(i,k) | k <- [j..n]]]
      | j == n           = [[a!(k,j) | k <- [i..m]]]
      | otherwise        = [a!(i,j) : cs | cs <- aux (i+1,j) ++ aux (i,j+1)]
      where m = nrows a
            n = ncols a
 
-- 2ª solución (mediante programación dinámica)
-- --------------------------------------------
 
caminos2 :: Matrix Int -> [[Int]]
caminos2 a = q ! (1,1)
  where
    q = matrix m n f
    m = nrows a
    n = ncols a
    f (i,j) | i == m    = [[a!(i,k) | k <- [j..n]]]
            | j == n    = [[a!(k,j) | k <- [i..m]]]
            | otherwise = [a!(i,j) : cs | cs <- q!(i+1,j) ++ q!(i,j+1)]  
 
-- 3ª solución
-- ===========
 
caminos3 :: Matrix Int -> [[Int]]
caminos3 a
  | m == 1 || n == 1 = [toList a]
  | otherwise = map (a ! (1,1):) (caminos3 (submatrix 2 m 1 n a) ++
                                  caminos3 (submatrix 1 m 2 n a)) 
  where m = nrows a
        n = ncols a
 
-- Comparación de eficiencia
-- -------------------------
 
--    λ> length (caminos1 (fromList 11 11 [1..]))
--    184756
--    (4.15 secs, 738,764,712 bytes)
--    λ> length (caminos2 (fromList 11 11 [1..]))
--    184756
--    (0.74 secs, 115,904,952 bytes)
--    λ> length (caminos3 (fromList 11 11 [1..]))
--    184756
--    (2.22 secs, 614,472,136 bytes)