Último dígito no nulo del factorial

El factorial de 7 es

por tanto, el último dígito no nulo del factorial de 7 es 4.

Definir la función

tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del factorial de n. Por ejemplo,

Comprobar con QuickCheck que si n es mayor que 4, entonces el último dígito no nulo del factorial de n es par.

Soluciones

Pensamiento

Incierto es, lo porvenir. ¿Quién sabe lo que va a pasar? Pero incierto es también lo pretérito. ¿Quién sabe lo que ha pasado? De suerte que ni el porvenir está escrito en ninguna parte, ni el pasado tampoco.

Antonio Machado

Tren de potencias

Si n es el número natural cuya expansión decimal es abc… , el tren de potencias de n es a^bc^d… donde el último exponente es 1, si n tiene un número impar de dígitos. Por ejemplo

Definir las funciones

tales que

  • (trenDePotencias n) es el tren de potencia de n. Por ejemplo.

  • (esPuntoFijoTrenDePotencias n) se verifica si n es un punto fijo de trenDePotencias; es decir, (trenDePotencias n) es igual a n. Por ejemplo,

  • puntosFijosTrenDePotencias es la lista de los puntso fijos de trenDePotencias. Por ejemplo,

  • (tablaTrenDePotencias a b) es la tabla de los trenes de potencias de los números entre a y b. Por ejemplo,

Comprobar con QuickCheck que entre 2593 y 24547284284866559999999999 la función trenDePotencias no tiene puntos fijos.

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

representa una solución del problema de las 3 torres.

Definir las funciones

tales que
+ (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,

Soluciones

[schedule expon=’2018-06-12′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de abril.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-12′ at=»06:00″]

[/schedule]

Número de triangulaciones de un polígono

Una triangulación de un polígono es una división del área en un conjunto de triángulos, de forma que la unión de todos ellos es igual al polígono original, y cualquier par de triángulos es disjunto o comparte únicamente un vértice o un lado. En el caso de polígonos convexos, la cantidad de triangulaciones posibles depende únicamente del número de vértices del polígono.

Si llamamos T(n) al número de triangulaciones de un polígono de n vértices, se verifica la siguiente relación de recurrencia:

Definir la función

tal que (numeroTriangulaciones n) es el número de triangulaciones de un polígono convexo de n vértices. Por ejemplo,

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Soluciones