Menu Close

Etiqueta: product

Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

   sumasDeDosAbundantes :: [Integer]

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

   take 10 sumasDeDosAbundantes  ==  [24,30,32,36,38,40,42,44,48,50]

Suma de divisores

Definir la función

   sumaDivisores :: Integer -> Integer

tal que (sumaDivisores x) es la suma de los divisores de x. Por ejemplo,

   sumaDivisores 12  ==  28
   sumaDivisores 25  ==  31
   sumaDivisores (product [1..25])  ==  93383273455325195473152000
   length (show (sumaDivisores (product [1..30000])))  ==  121289
   maximum (map sumaDivisores [1..10^5])  ==  403200

Número de divisores

Definir la función

   numeroDivisores :: Integer -> Integer

tal que (numeroDivisores x) es el número de divisores de x. Por ejemplo,

   numeroDivisores 12  ==  6
   numeroDivisores 25  ==  3
   length (show (numeroDivisores (product [1..3*10^4])))  ==  1948

Conjunto de divisores

Definir la función

   divisores :: Integer -> [Integer]

tal que (divisores x) es el conjunto de divisores de x. Por ejemplo,

  divisores 30  ==  [1,2,3,5,6,10,15,30]
  length (divisores (product [1..10]))  ==  270
  length (divisores (product [1..25]))  ==  340032

Mayor producto de las ramas de un árbol

Los árboles se pueden representar mediante el siguiente tipo de datos

   data Arbol a = N a [Arbol a]
     deriving Show

Por ejemplo, los árboles

      1              3
    /  \            /|\
   2   3           / | \
       |          5  4  7
       4          |     /\
                  6    2  1

se representan por

   ej1, ej2 :: Arbol Int
   ej1 = N 1 [N 2 [],N 3 [N 4 []]]
   ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]

Definir la función

   mayorProducto :: (Ord a, Num a) => Arbol a -> a

tal que (mayorProducto a) es el mayor producto de las ramas del árbol a. Por ejemplo,

   λ> mayorProducto (N 1 [N 2 [], N  3 []])
   3
   λ> mayorProducto (N 1 [N 8 [], N  4 [N 3 []]])
   12
   λ> mayorProducto (N 1 [N 2 [],N 3 [N 4 []]])
   12
   λ> mayorProducto (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
   90
   λ> mayorProducto (N (-8) [N 0 [N (-9) []],N 6 []])
   0
   λ> a = N (-4) [N (-7) [],N 14 [N 19 []],N (-1) [N (-6) [],N 21 []],N (-4) []]
   λ> mayorProducto a
   84

Soluciones

import Test.QuickCheck
 
data Arbol a = N a [Arbol a]
  deriving Show
 
-- 1ª solución
-- ===========
 
mayorProducto1 :: (Ord a, Num a) => Arbol a -> a
mayorProducto1 a = maximum [product xs | xs <- ramas a]
 
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
--    λ> ramas (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
--    [[3,5,6],[3,4],[3,7,2],[3,7,1]]
ramas :: Arbol b -> [[b]]
ramas (N x []) = [[x]]
ramas (N x as) = [x : xs | a <- as, xs <- ramas a]
 
-- 2ª solución
-- ===========
 
mayorProducto2 :: (Ord a, Num a) => Arbol a -> a
mayorProducto2 a = maximum (map product (ramas a))
 
-- 3ª solución
-- ===========
 
mayorProducto3 :: (Ord a, Num a) => Arbol a -> a
mayorProducto3 = maximum . map product . ramas
 
-- 4º solución
-- ===========
 
mayorProducto4 :: (Ord a, Num a) => Arbol a -> a
mayorProducto4 = maximum . productosRamas
 
-- (productosRamas a) es la lista de los productos de las ramas
-- del árbol a. Por ejemplo,
--    λ> productosRamas (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
--    [90,12,42,21]
productosRamas :: (Ord a, Num a) => Arbol a -> [a]
productosRamas (N x []) = [x]
productosRamas (N x xs) = [x * y | a <- xs, y <- productosRamas a]
 
-- 5ª solución
-- ===========
 
mayorProducto5 :: (Ord a, Num a) => Arbol a -> a
mayorProducto5 (N x []) = x
mayorProducto5 (N x xs)
  | x > 0     = x * maximum (map mayorProducto5 xs)
  | x == 0    = 0
  | otherwise = x * minimum (map menorProducto xs)
 
-- (menorProducto a) es el menor producto de las ramas del árbol
-- a. Por ejemplo,
--    λ> menorProducto (N 1 [N 2 [], N  3 []])
--    2
--    λ> menorProducto (N 1 [N 8 [], N  4 [N 3 []]])
--    8
--    λ> menorProducto (N 1 [N 2 [],N 3 [N 4 []]])
--    2
--    λ> menorProducto (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
--    12
menorProducto :: (Ord a, Num a) => Arbol a -> a
menorProducto (N x []) = x
menorProducto (N x xs)
  | x > 0     = x * minimum (map menorProducto xs)
  | x == 0    = 0
  | otherwise = x * maximum (map mayorProducto2 xs)
 
-- 6ª solución
-- ===========
 
mayorProducto6 :: (Ord a, Num a) => Arbol a -> a
mayorProducto6 = maximum . aux
  where aux (N a []) = [a]
        aux (N a b)  = [v,u]
          where u = maximum g
                v = minimum g
                g = map (*a) (concatMap aux b)
 
-- Comprobación de equivalencia
-- ============================
 
-- (arbolArbitrario n) es un árbol aleatorio de orden n. Por ejemplo,
--   > sample (arbolArbitrario 5 :: Gen (Arbol Int))
--   N 0 [N 0 []]
--   N (-2) []
--   N 4 []
--   N 2 [N 4 []]
--   N 8 []
--   N (-2) [N (-9) [],N 7 []]
--   N 11 []
--   N (-11) [N 4 [],N 14 []]
--   N 10 [N (-3) [],N 13 []]
--   N 12 [N 11 []]
--   N 20 [N (-18) [],N (-13) []]
arbolArbitrario :: Arbitrary a => Int -> Gen (Arbol a)
arbolArbitrario n = do
  x  <- arbitrary
  ms <- sublistOf [0 .. n `div` 2]
  as <- mapM arbolArbitrario ms
  return (N x as)
 
-- Arbol es una subclase de Arbitraria
instance Arbitrary a => Arbitrary (Arbol a) where
  arbitrary = sized arbolArbitrario
 
-- La propiedad es
prop_mayorProducto :: Arbol Integer -> Bool
prop_mayorProducto a =
  all (== mayorProducto1 a)
      [f a | f <- [ mayorProducto2
                  , mayorProducto3
                  , mayorProducto4
                  , mayorProducto5
                  , mayorProducto6
                  ]]
 
-- La comprobación es
--    λ> quickCheck prop_mayorProducto
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> ejArbol <- generate (arbolArbitrario 600 :: Gen (Arbol Integer))
--    λ> mayorProducto1 ejArbol
--    2419727651266241493467136000
--    (1.87 secs, 1,082,764,480 bytes)
--    λ> mayorProducto2 ejArbol
--    2419727651266241493467136000
--    (1.57 secs, 1,023,144,008 bytes)
--    λ> mayorProducto3 ejArbol
--    2419727651266241493467136000
--    (1.55 secs, 1,023,144,248 bytes)
--    λ> mayorProducto4 ejArbol
--    2419727651266241493467136000
--    (1.60 secs, 824,473,800 bytes)
--    λ> mayorProducto5 ejArbol
--    2419727651266241493467136000
--    (0.83 secs, 732,370,352 bytes)
--    λ> mayorProducto6 ejArbol
--    2419727651266241493467136000
--    (0.98 secs, 817,473,344 bytes)
--
--    λ> ejArbol2 <- generate (arbolArbitrario 700 :: Gen (Arbol Integer))
--    λ> mayorProducto5 ejArbol2
--    1044758937398026715504640000000
--    (4.94 secs, 4,170,324,376 bytes)
--    λ> mayorProducto6 ejArbol2
--    1044758937398026715504640000000
--    (5.88 secs, 4,744,782,024 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

   sylvester        :: Integer -> Integer
   graficaSylvester :: Integer -> Integer -> IO ()

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,
     λ> [sylvester n | n <- [0..7]]
     [2,3,7,43,1807,3263443,10650056950807,113423713055421844361000443]
     λ> length (show (sylvester 25))
     6830085
  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

import Data.List               (genericIndex)
import Data.Array              ((!), array)
import Graphics.Gnuplot.Simple (plotList, Attribute (Key, PNG))
 
-- 1ª solución (por recursión)
-- ===========================
 
sylvester1 :: Integer -> Integer
sylvester1 0 = 2
sylvester1 n = 1 + product [sylvester1 k | k <- [0..n-1]]
 
-- 2ª solución (con programación dinámica)
-- =======================================
 
sylvester2 :: Integer -> Integer
sylvester2 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + product [v!k | k <- [0..m-1]]
 
-- 3ª solución
-- ===========
 
-- Observando que
--    S(n) = 1 + S(0)*S(1)*...*S(n-2)*S(n-1)
--         = 1 + (1 + S(0)*S(1)*...*S(n-2))*S(n-1) - S(n-1)
--         = 1 + S(n-1)*S(n-1) - S(n-1)
--         = 1 + S(n-1)^2 - S(n-1)
-- se obtiene la siguiente definición.
sylvester3 :: Integer -> Integer
sylvester3 0 = 2
sylvester3 n = 1 + x^2 - x
  where x = sylvester3 (n-1)
 
-- 4ª solución
-- ===========
 
sylvester4 :: Integer -> Integer
sylvester4 n = v ! n where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 2
  f m = 1 + x^2 - x
    where x = v ! (m-1)
 
-- 5ª solución
-- ===========
 
sylvester5 :: Integer -> Integer
sylvester5 n = sucSylvester5 `genericIndex` n
 
sucSylvester5 :: [Integer]
sucSylvester5 = iterate (\x -> (x-1)*x+1) 2 
 
-- La comparación es
--    λ> length (show (sylvester1 23))
--    1707522
--    (6.03 secs, 4,090,415,704 bytes)
--    λ> length (show (sylvester2 23))
--    1707522
--    (0.33 secs, 109,477,296 bytes)
--    λ> length (show (sylvester3 23))
--    1707522
--    (0.35 secs, 109,395,136 bytes)
--    λ> length (show (sylvester4 23))
--    1707522
--    (0.33 secs, 109,402,440 bytes)
--    λ> length (show (sylvester5 23))
--    1707522
--    (0.30 secs, 108,676,256 bytes)
 
graficaSylvester :: Integer -> Integer -> IO ()
graficaSylvester d n =
  plotList [ Key Nothing
           , PNG ("La_sucesion_de_Sylvester_" ++ show (d,n) ++ ".png")
           ]
           [sylvester5 k `mod` (10^d) | k <- [0..n]]

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro “Introductio in Analysis Infinitorum” (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

  aproximacionPi :: Int -> Double
  grafica        :: Int -> IO ()

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.
     aproximacionPi 1        ==  1.0
     aproximacionPi 10       ==  2.3289682539682537
     aproximacionPi 100      ==  2.934318000847734
     aproximacionPi 1000     ==  3.0603246224585128
     aproximacionPi 10000    ==  3.1105295744825403
     aproximacionPi 100000   ==  3.134308801935256
     aproximacionPi 1000000  ==  3.1395057903490806
  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Soluciones

import Data.Numbers.Primes
import Graphics.Gnuplot.Simple
 
-- 1ª definición
-- =============
 
aproximacionPi :: Int -> Double
aproximacionPi n =
  sum [1 / fromIntegral (k * signo k) | k <- [1..n]] 
 
signoPrimo :: Int -> Int
signoPrimo 2 = 1
signoPrimo p | p `mod` 4 == 3 = 1
             | otherwise      = -1
 
signo :: Int -> Int
signo n | isPrime n = signoPrimo n
        | otherwise = product (map signoPrimo (primeFactors n))
 
-- 2ª definición
-- =============
 
aproximacionPi2 :: Int -> Double
aproximacionPi2 n = serieEuler !! (n-1)
 
serieEuler :: [Double]
serieEuler =
  scanl1 (+) [1 / fromIntegral (n * signo n) | n <- [1..]]
 
-- Definición de grafica
-- =====================
 
grafica :: Int -> IO ()
grafica n = 
    plotList [Key Nothing]
             [(k,aproximacionPi2 k) | k <- [100,110..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Productos de dos y tres números consecutivos

Definir la función

   productos :: Integer -> Integer -> [[Integer]]

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

   productos 2 6     ==  [[2,3]]
   productos 3 6     ==  [[1,2,3]]
   productos 4 1680  ==  [[5,6,7,8]]
   productos 2 5     ==  []

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

   productos n (product [x..x+n-1]) == [[x..x+n-1]]

Usando productos, definir la función

   productosDe2y3consecutivos :: [Integer]

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

   head productosDe2y3consecutivos  ==  6

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

import Test.QuickCheck
 
-- 1ª definición
productos1 :: Integer -> Integer -> [[Integer]]
productos1 n x =
  [[y..y+n-1] | y <- [1..x]
              , product [y..y+n-1] == x]
 
-- 2ª definición
productos2 :: Integer -> Integer -> [[Integer]]
productos2 n x =
  [[z..z+n-1] | z <- [1..y]
              , product [z..z+n-1] == x]
  where y = head (filter (\y -> y^n >= x) [2..])
 
productos :: Integer -> Integer -> [[Integer]]
productos = productos2
 
prop_productos n x =
  n > 0 && x > 0 ==> productos n (product [x..x+n-1]) == [[x..x+n-1]]
 
-- La comprobación es
--    λ> quickCheck prop_productos
--    +++ OK, passed 100 tests.
--    (0.10 secs, 26409644 bytes)
 
productosDe2y3consecutivos :: [Integer]
productosDe2y3consecutivos =
  [x | x <- [1..] 
     , (not . null) (productos 2 x)
     , (not . null) (productos 3 x)]
 
-- El cálculo es
--    λ> take 2 productosDe2y3consecutivos
--    [6,210]
--    λ> productos 2 210
--    [[14,15]]
--    λ> productos 3 210
--    [[5,6,7]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“El verdadero viaje de descubrimiento no consiste en buscar nuevos paisajes sino en tener nuevos ojos.”

Marcel Proust.

Números de Bell

Una partición de un conjunto A es un conjunto de subconjuntos no vacíos de A, disjuntos dos a dos y cuya unión es A. Por ejemplo, el conjunto {1, 2, 3} tiene exactamente 5 particiones:

   {{1}, {2}, {3}}
   {{1,2}, {3}}
   {{1,3}, {2}}
   {{1}, {2,3}}
   {{1,2,3}}

El n-ésimo número de Bell, B(n), es el número de particiones de un conjunto de n elementos. Por lo visto anteriormentem B(3) = 5.

Definir las funciones

   particiones :: [a] -> [[[a]]]
   bell :: Integer -> Integer

tales que

  • (particiones xs) es el conjunto de las particiones de xs. Por ejemplo,
     λ> particiones [1,2]
     [[[1,2]],[[1],[2]]]
     λ> particiones [1,2,3]
     [[[1,2,3]],[[1],[2,3]],[[1,2],[3]],[[2],[1,3]],[[1],[2],[3]]]
     λ> particiones "abcd"
     [["abcd"],["a","bcd"],["ab","cd"],["b","acd"],["abc","d"],["bc","ad"],
      ["ac","bd"],["c","abd"],["a","b","cd"],["a","bc","d"],["a","c","bd"],
      ["ab","c","d"],["b","ac","d"],["b","c","ad"],["a","b","c","d"]]
  • (bell n) es el n-ésimo número de Bell. Por ejemplo,
     λ> bell 3
     5
     λ> map bell [0..10]
     [1,1,2,5,15,52,203,877,4140,21147,115975]

Comprobar con QuickCheck que (bell n) es equivalente a la función B(n) definida por

  • B(0) = 1
  • B(n) = \displaystyle \sum_{k=0}^{n-1} \binom{n-1}{k} B(k)

Soluciones

import Data.List (genericLength)
import Test.QuickCheck
 
-- Definición de particiones
-- =========================
 
particiones :: [a] -> [[[a]]]
particiones [] = [[]]
particiones (x:xs) =
  concat [([x] : yss) : inserta x yss | yss <- ysss]
  where ysss = particiones xs
 
-- (inserta x yss) es la lista obtenida insertando x en cada uno de los
-- elementos de yss. Por ejemplo, 
--    λ> inserta 1 [[2,3],[4],[5,6,7]]
--    [[[1,2,3],[4],[5,6,7]],[[2,3],[1,4],[5,6,7]],[[2,3],[4],[1,5,6,7]]]
inserta :: a -> [[a]] -> [[[a]]]
inserta _ []       = []
inserta x (ys:yss) = ((x:ys):yss) : [ys : zs | zs <- inserta x yss] 
 
-- Definición de Bell
-- ==================
 
bell :: Integer -> Integer
bell n = genericLength (particiones [1..n])
 
-- Propiedad
-- =========
 
prop_Bell :: Integer -> Property
prop_Bell n =
  n >= 0 ==> bell n == b n
 
b :: Integer -> Integer
b 0 = 1
b n = sum [comb (n-1) k * b k | k <- [0..n-1]]
 
comb :: Integer -> Integer -> Integer
comb n k = product [n-k+1..n] `div` product [1..k]
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=10}) prop_Bell
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Cambiemos nuestra actitud tradicional en la construcción de programas. En lugar de imaginar que nuestra tarea principal es indicarle a una computadora lo que debe hacer, concentrémonos más bien en explicarle a los seres humanos lo que queremos que haga una computadora.”

Donald Knuth.

Acotación del primorial

El primorial de un número natural n es el producto de todos los números primos menores o iguales a n. Por ejemplo, el primorial de 5 es 30 porque el producto de los primos menores o iguales que 5 es

   2 * 3 * 5 = 30

La propiedad de Erdös de acotación de los primoriales afirma que

Para todo número natural n, su primorial es menor o igual que 4ⁿ.

Definir las funciones

   primorial :: Integer -> Integer
   primoriales :: [Integer]

tales que

  • (primorial n) es el primorial de n. Por ejemplo,
     primorial 3  ==  6
     primorial 5  ==  30
     primorial 8  ==  210
  • primoriales es la sucesión de los primoriales. Por ejemplo,
   λ> take 15 primoriales
   [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]

Comprobar con QuickCheck la propiedad de Erdös de acotación de los primoriales.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
 
-- 1ª definición de primorial
-- ==========================
 
primorial :: Integer -> Integer
primorial n = product (takeWhile (<= n) primes)
 
-- 2ª definición de primorial
-- ==========================
 
primorial2 :: Integer -> Integer
primorial2 0 = 1
primorial2 n | gcd n x == 1 = n*x
             | otherwise    = x
  where x = primorial2 (n-1)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> length (show (primorial (5*10^5)))
--    216852
--    (1.65 secs, 2,472,977,584 bytes)
--    λ> length (show (primorial2 (5*10^5)))
--    216852
--    (3.56 secs, 2,719,162,272 bytes)
 
-- 1ª definición de primoriales
-- ============================
 
--    λ> take 15 primoriales
--    [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]
primoriales :: [Integer]
primoriales = map primorial [0..]
 
-- 2ª definición de primoriales
-- ============================
 
--    λ> take 15 primoriales2
--    [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]
primoriales2 :: [Integer]
primoriales2 = map primorial2 [0..]
 
-- 3ª definición de primoriales
-- ============================
 
--    λ> take 15 primoriales3
--    [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]
primoriales3 :: [Integer]
primoriales3 = scanl1 f [1..]
  where f x n | gcd n x == 1 = n*x
              | otherwise    = x
 
-- Comparación de eficiencia
-- =========================
 
--    λ> minimum (take 5000 primoriales)
--    1
--    (1.56 secs, 4,857,760,464 bytes)
--    λ> minimum (take 5000 primoriales2)
--    1
--    (9.39 secs, 10,942,848,240 bytes)
--    λ> minimum (take 5000 primoriales3)
--    1
--    (0.01 secs, 5,575,024 bytes)
--    
--    λ> minimum (take 6000 primoriales)
--    1
--    (2.22 secs, 7,013,937,248 bytes)
--    λ> minimum (take 6000 primoriales3)
--    1
--    (0.01 secs, 6,737,328 bytes)
 
-- Propiedad
-- =========
 
prop_primorial :: Integer -> Property
prop_primorial n =
  n >= 0 ==> primorial n <= 4^n
 
-- La comprobación es
--    λ> quickCheck prop_primorial
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Las matemáticas son la reina de las ciencias y la teoría de los números es la reina de las matemáticas.”

Carl Friedrich Gauss.