Matrices de Pascal

El triángulo de Pascal es un triángulo de números

construido de la siguiente forma

  • la primera fila está formada por el número 1;
  • las filas siguientes se construyen sumando los números adyacentes de la fila superior y añadiendo un 1 al principio y al final de la fila.

La matriz de Pascal es la matriz cuyas filas son los elementos de la
correspondiente fila del triángulo de Pascal completadas con ceros. Por ejemplo, la matriz de Pascal de orden 6 es

Definir la función

tal que (matrizPascal n) es la matriz de Pascal de orden n. Por ejemplo,

Soluciones

Números cuyos factoriales son divisibles por x pero no por y

Hay 3 números (el 2, 3 y 4) cuyos factoriales son divisibles por 2 pero no por 5. Análogamente, hay números 5 (el 5, 6, 7, 8, 9) cuyos factoriales son divisibles por 15 pero no por 25.

Definir la función

tal que (nNumerosConFactorialesDivisibles x y) es la cantidad de números cuyo factorial es divisible por x pero no por y. Por ejemplo,

Soluciones

Factorial módulo

Definir la función

tal que (factorialMod n x) es el factorial de x módulo n. Por ejemplo,

Soluciones

Aplicaciones biyectivas

Definir las funciones

tales que

  • (biyectivas xs ys) es el conjunto de las aplicaciones biyectivas del conjunto xs en el conjunto ys. Por ejemplo,

  • (nBiyectivas xs ys) es el número de aplicaciones biyectivas del conjunto xs en el conjunto ys. Por ejemplo,

Nota: En este ejercicio los conjuntos se representan mediante listas ordenadas de elementos distintos.

Soluciones

Cadenas de sumas de factoriales de los dígitos

Dado un número n se considera la sucesión cuyo primer término es n y los restantes se obtienen sumando los factoriales de los dígitos del anterior. Por ejemplo, la sucesión que empieza en 69 es

La cadena correspondiente a un número n son los términos de la sucesión que empieza en n hasta la primera repetición de un elemento en la sucesión. Por ejemplo, la cadena de 69 es

Consta de una parte no periódica ([69,363600]) y de una periódica ([1454,169,363601]).

Definir las funciones

tales que

  • (cadena n es la cadena correspondiente al número n. Por ejemplo,

  • (periodo n) es la parte periódica de la cadena de n. Por ejemplo,

Soluciones

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

Soluciones

Números libres de cuadrados

Un número entero positivo es libre de cuadrados si no es divisible el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2^2.

Definir la función

tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados. Por ejemplo,

Otro ejemplo,

Soluciones

El problema de las N torres

El problema de las N torres consiste en colocar N torres en un tablero con N filas y N columnas de forma que no haya dos torres en la misma fila ni en la misma columna.

Cada solución del problema de puede representar mediante una matriz con ceros y unos donde los unos representan las posiciones ocupadas por las torres y los ceros las posiciones libres. Por ejemplo,

representa una solución del problema de las 3 torres.

Definir las funciones

tales que
+ (torres n) es la lista de las soluciones del problema de las n torres. Por ejemplo,

  • (nTorres n) es el número de soluciones del problema de las n torres. Por ejemplo,

Soluciones

Número de dígitos del factorial

Definir las funciones

tales que

  • (nDigitosFact n) es el número de dígitos de n!. Por ejemplo,

  • (graficas xs) dibuja las gráficas de los números de dígitos del factorial de k (para k en xs) y de la recta y = 5.5 x. Por ejemplo, (graficas [0,500..10^6]) dibuja
    Numero_de_digitos_del_factorial

Nota: Este ejercicio está basado en el problema How many digits? de Kattis en donde se impone la restricción de calcular, en menos de 1 segundo, el número de dígitos de los factoriales de 10.000 números del rango [0,1.000.000].

Se puede simular como sigue

Soluciones

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro «Introductio in Analysis Infinitorum» (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.

  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Nota: Este ejercicio ha sido propuesto por Paula Macías.

Soluciones

Cálculo de pi usando la fórmula de Vieta

La fórmula de Vieta para el cálculo de pi es la siguiente
Calculo_de_pi_usando_la_formula_de_Vieta

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi usando n factores de la fórmula de Vieta. Por ejemplo,

  • (errorPi x) es el menor número de factores de la fórmula de Vieta necesarios para obtener pi con un error menor que x. Por ejemplo,

Soluciones

Máxima potencia que divide al factorial

La máxima potencia de 2 que divide al factorial de 5 es 3, ya que 5! = 120, 120 es divisible por 2^3 y no lo es por 2^4.

Definir la función

tal que (maxPotDivFact p n), para cada primo p, es el mayor k tal que p^k divide al factorial de n. Por ejemplo,

Soluciones

Huecos de Euclides

El teorema de Euclides afirma que existen infinitos números primos. En palabras de Euclides,

«Hay más números primos que cualquier cantidad propuesta de números primos.» (Proposición 20 del Libro IX de «Los Elementos»)

Su demostración se basa en que si p₁,…,pₙ son los primeros n números primos, entonces entre 1+pₙ y 1+p₁·p₂·…·pₙ hay algún número primo. La cantidad de dichos números primos se llama el n-ésimo hueco de Euclides. Por ejemplo, para n = 3 se tiene que p₁ = 2, p₂ = 3 y p₃ = 5 entre 1+p₃ = 6 y 1+p₁·p₂·p₃ = 31 hay 8 números primos (7, 11, 13, 17, 19, 23, 29 y 31), por lo que el valor del tercer hueco de Euclides es 8.

Definir la función

tal que (hueco n) es el n-ésimo hueco de Eulides. Por ejemplo,

Soluciones

Referencias

Máximo producto en la partición de un número

El artículo de esta semana de Antonio Roldán en su blog Números y hoja de cálculo es Máximo producto en la partición de un número (1)

Una partición de un entero positivo n es una forma de descomponer n como suma de enteros positivos. Dos sumas se considerarán iguales si solo difieren en el orden de los sumandos. Por ejemplo, las 11 particiones de 6 (con sus correspondientes productos) son

Se observa que el máximo producto de las particiones de 6 es 9.

Definir la función

tal que (maximoProductoParticiones n) es el máximo de los productos de las particiones de n. Por ejemplo,

Comprobar con QuickChek que los únicos posibles factores de (maximoProductoParticiones n) son 2 y 3.

Soluciones

Referencia

Caminos en una retícula

El problema de los caminos en una retícula consiste en, dada una retícula rectangular con m filas y n columnas, determinar todos los caminos para ir desde el vértice inferior izquierdo hasta el vértice superior derecho donde los movimientos permitidos son mover hacia el siguiente vértice a la derecha o arriba.

Por ejemplo, en la siguiente retícula un posible camino es el indicado en rojo.
C

Para representar los caminos se definen los siguientes tipos de datos:

Por tanto, el camino de la figura anterior se representa por la lista [D,D,A,D,A].

Definir las funciones

tales que

  • (caminos m n) es la lista de los caminos en una retícula rectangular con m filas y n columnas. Por ejemplo,

  • (nCaminos m n) es el número de los caminos en una retícula rectangular con m filas y n columnas. Por ejemplo,

Soluciones

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Factorial generalizado

El factorial generalizado de x respecto de y y z es el producto x(x-z)(x-2z) … (x-(y-1)z). Por ejemplo, el factorial generalizado de 7 respecto de 3 y 2 es 7x5x3 = 105 y el de 7 respecto de 2 y 3 es 7×4 = 28

Definir la función

tal que (factGen x y z) es el factorial generalizado de x respecto de y y z. Por ejemplo,

Nota: Se supone que x, y y z son positivos y z < x.

Comprobar con QuickCheck que (factGen x x 1) es el factorial de x.

Soluciones

Solución en Maxima

Dígitos en la factorización

El enunciado del problema 652 de Números y algo más es el siguiente

Si factorizamos los factoriales de un número en función de sus divisores primos y sus potencias, ¿Cuál es el menor número n tal que entre los factores primos y los exponentes de estos, n! contiene los dígitos del cero al nueve? Por ejemplo

  • 6! = 2⁴x3²x5¹, le faltan los dígitos 0,6,7,8 y 9
  • 12! = 2¹⁰x3⁵x5²x7¹x11¹, le faltan los dígitos 4,6,8 y 9

Definir la función

tal que (digitosDeFactorizacion n) es el conjunto de los dígitos que aparecen en la factorización de n. Por ejemplo,

Usando la función anterior, calcular la solución del problema.

Comprobar con QuickCheck que si n es mayor que 100, entonces

Soluciones

La solución en Maxima

Puntos visibles en la cuadrícula de un plano

La cuadrícula entera de lado n, Cₙ, es el conjunto de los puntos (x,y) donde x e y son números enteros tales que 1 ≤ x, y ≤ n.

Un punto (x,y) de Cₙ es visible desde el origen si el máximo común divisor de x e y es 1. Por ejemplo, el punto (4,6) no es visible porque está ocultado por el (2,3); en cambio, el (2,3) sí es visible.

El conjunto de los puntos visibles en la cuadrícula entera de lado 6 son (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,3), (2,5), (3,1), (3,2), (3,4), (3,5), (4,1), (4,3), (4,5), (5,1), (5,2), (5,3), (5,4), (5,6), (6,1) y (6,5).

Definir la función

tal que (nVisibles n) es el número de los puntos visibles en la cuadrícula de lado n.Por ejemplo,

Soluciones

Referencias

Parte libre de cuadrados y parte cuadrada de un número

La parte libre de cuadrados de un número n es el producto de todos sus divisores primos con exponente impar en la factorización prima de n. Por ejemplo, la parte libre de cuadrados de 360 es 10 ya que 360 = 2³3²5 y 2.5 = 10; además, 360 = 10.6²

La parte cuadrada de un número n es el mayor número cuadrado que divide a n. Por ejemplo, la parte cuadrada de 360 es 6.

Definir las funciones

tales que

  • (parteLibre x) es la parte libre de x. Por ejemplo,

  • (parteCuadrada x) es la parte cuadrada de x. Por ejemplo,

Soluciones

Referencias

Producto infinito

Definir la función

tal que (productoInfinito xs) es la lista infinita que en la posición N tiene el producto de los N primeros elementos de la lista infinita xs. Por ejemplo,

Nota: Este ejercicio es parte del examen del grupo 3 del 2 de diciembre.

Soluciones

Productos de N números consecutivos

La semana pasada se planteó en Twitter el siguiente problema

Se observa que

¿Existen ejemplos de otros productos de cuatro enteros consecutivos iguales a un producto de tres enteros consecutivos?

Definir la función

tal que (esProductoDeNconsecutivos n x) es (Just m) si x es el producto de n enteros consecutivos a partir de m y es Nothing si x no es el producto de n enteros consecutivos. Por ejemplo,

Para ejemplos mayores,

Usando la función esProductoDeNconsecutivos resolver el problema.

Soluciones

Números libres de cuadrados

Un número es libre de cuadrados si no es divisible el cuadrado de ningún entero mayor que 1. Por ejemplo, 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en cambio, 40 no es libre de cuadrados porque es divisible por 2².

Definir la función

tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados. Por ejemplo,

Soluciones

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Soluciones

Menor número triangular con más de n divisores

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, el 7º número triangular es

Los primeros 10 números triangulares son

Los divisores de los primeros 7 números triangulares son:

Como se puede observar, 28 es el menor número triangular con más de 5 divisores.

Definir la función

tal que (menorTriangularConAlMenosNDivisores n) es el menor número triangular que tiene al menos n divisores. Por ejemplo,

Soluciones

Último dígito no nulo del factorial

Enunciado

Soluciones