Emparejamiento binario

Definir la función

tal que (zipBinario fs xs ys) es la lista obtenida aplicando cada una de las operaciones binarias de fs a los correspondientes elementos de xs e ys. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Ordenación de estructuras

Las notas de los dos primeros exámenes se pueden representar mediante el siguiente tipo de dato

Por ejemplo, (Notas «Juan» 6 5) representa las notas de un alumno cuyo nombre es Juan, la nota del primer examen es 6 y la del segundo es 5.

Definir la función

tal que (ordenadas ns) es la lista de las notas ns ordenadas considerando primero la nota del examen 2, a continuación la del examen 1 y finalmente el nombre. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se muestra en el siguiente vídeo

Numeración de las ternas de números naturales

Las ternas de números naturales se pueden ordenar como sigue

Definir la función

tal que (posicion (x,y,z)) es la posición de la terna de números naturales (x,y,z) en la ordenación anterior. Por ejemplo,

Comprobar con QuickCheck que

  • la posición de (x,0,0) es x(x²+6x+11)/6
  • la posición de (0,y,0) es y(y²+3y+ 8)/6
  • la posición de (0,0,z) es z(z²+3z+ 2)/6
  • la posición de (x,x,x) es x(9x²+14x+7)/2

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se muestra en el siguiente vídeo:

Alfabeto comenzando en un carácter

Definir la función

tal que (alfabetoDesde c) es el alfabeto, en minúscula, comenzando en el carácter c, si c es una letra minúscula y comenzando en ‘a’, en caso contrario. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se muestra en el siguiente vídeo

Ramas de un árbol

Los árboles se pueden representar mediante el siguiente tipo de datos

Por ejemplo, los árboles

se representan por

Definir la función

tal que (ramas a) es la lista de las ramas del árbol a. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Valores de polinomios representados con vectores

Los polinomios se pueden representar mediante vectores usando la librería Data.Array. En primer lugar, se define el tipo de los polinomios (con coeficientes de tipo a) mediante

Como ejemplos, definimos el polinomio

que representa a 6 + 2x – 5x^2 + 7x^4 y el polinomio

que representa a 6.5 + 2x – 5.2x^2 + 7x^4

Definir la función

tal que (valor p b) es el valor del polinomio p en el punto b. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se encuentran en el siguiente vídeo

Segmentos maximales de elementos consecutivos

Definir la función

tal que (segmentos xss) es la lista de los segmentos maximales de xss formados por elementos consecutivos. Por ejemplo,

Soluciones

[schedule expon=’2022-03-18′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 18 de marzo.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-03-18′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Segmentos_consecutivos.hs).

La elaboración de las soluciones explica en el siguiente vídeo:


[/schedule]

Lista cuadrada

Definir la función

tal que (listaCuadrada n x xs) es una lista de n listas de longitud n formadas con los elementos de xs completada con x, si no xs no tiene suficientes elementos. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de la solución se muestra en el siguiente vídeo:

Matrices de Toepliz

Una matriz de Toeplitz es una matriz cuadrada que es constante a lo largo de las diagonales paralelas a la diagonal principal. Por ejemplo,

la primera es una matriz de Toeplitz y la segunda no lo es.

Las anteriores matrices se pueden definir por

Definir la función

tal que (esToeplitz p) se verifica si la matriz p es de Toeplitz. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Suma si todos los valores son justos

Definir la función

tal que (sumaSiTodosJustos xs) es justo la suma de todos los elementos de xs si todos son justos (es decir, si Nothing no pertenece a xs) y Nothing en caso contrario. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Anagramas

Una palabra es una anagrama de otra si se puede obtener permutando sus letras. Por ejemplo, «mora» y «roma» son anagramas de «amor».

Definir la función

tal que (anagramas x ys) es la lista de los elementos de ys que son anagramas de x. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Ordenación por el máximo

Definir la función

tal que (ordenadosPorMaximo xss) es la lista de los elementos de xss ordenada por sus máximos (se supone que los elementos de xss son listas no vacía) y cuando tiene el mismo máximo se conserva el orden original. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Determinación de los elementos minimales

Definir la función

tal que (minimales xss) es la lista de los elementos de xss que no están contenidos en otros elementos de xss. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Suma de los números amigos menores que n

Dos números amigos son dos números enteros positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la función

tal que (sumaAmigosMenores n) es la suma de los números amigos menores que n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Sucesión de números amigos

Dos números amigos son dos números enteros positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la lista

cuyos elementos son los pares de números amigos con la primera componente menor que la segunda. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Números amigos

Dos números amigos son dos números enteros positivos distintos tales que la suma de los divisores propios de cada uno es igual al otro. Los divisores propios de un número incluyen la unidad pero no al propio número. Por ejemplo, los divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110. La suma de estos números equivale a 284. A su vez, los divisores propios de 284 son 1, 2, 4, 71 y 142. Su suma equivale a 220. Por tanto, 220 y 284 son amigos.

Definir la función

tal que (amigos x y) se verifica si los números x e y son amigos. Por ejemplo,

Soluciones

El código se encuentra en GitHub

Máxima suma de caminos en un triángulo

Los triángulos se pueden representar mediante listas de listas. Por ejemplo, el triángulo

se reperesenta por

Definir la función

tal que (maximaSuma xss) es el máximo de las sumas de los elementos de los caminos en el triángulo xss donde los caminos comienzan en el elemento de la primera fila, en cada paso se mueve a uno de sus dos elementos adyacentes en la fila siguiente y terminan en la última fila. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Mayor órbita de la sucesión de Collatz

Se considera la siguiente operación, aplicable a cualquier número entero positivo:

  • Si el número es par, se divide entre 2.
  • Si el número es impar, se multiplica por 3 y se suma 1.

Dado un número cualquiera, podemos calcular su órbita; es decir, las imágenes sucesivas al iterar la función. Por ejemplo, la órbita de 13 es

Si observamos este ejemplo, la órbita de 13 es periódica, es decir, se repite indefinidamente a partir de un momento dado). La conjetura de Collatz dice que siempre alcanzaremos el 1 para cualquier número con el que comencemos. Por ejemplo,

  • Empezando en n = 6 se obtiene 6, 3, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 11 se obtiene: 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
  • Empezando en n = 27, la sucesión tiene 112 pasos, llegando hasta 9232 antes de descender a 1: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Definir la función

tal que (mayoresGeneradores n) es la lista de los números menores o iguales que n cuyas órbitas de Collatz son las de mayor longitud. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Exponente en la factorización

Definir la función

tal que (exponente x n) es el exponente de x en la factorizacón prima de n (se supone que x > 1 y n > 0). Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Número de ocurrencias de elementos

Definir la función

tal que (ocurrencias xs) es el conjunto de los elementos de xs junto con sus números de ocurrencias. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reconocimiento de potencias de 4

Definir la función

tal que (esPotenciaDe4 n) se verifica si n es una potencia de 4. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Producto de los elementos de la diagonal principal

Las matrices se pueden representar como lista de listas de la misma longitud, donde cada uno de sus elementos representa una fila de la matriz.

Definir la función

tal que (productoDiagonalPrincipal xss) es el producto de los elementos de la diagonal principal de la matriz cuadrada xss. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Reiteración de suma de consecutivos

La reiteración de la suma de los elementos consecutivos de la lista [1,5,3] es 14 como se explica en el siguiente diagrama

y la de la lista [1,5,3,4] es 29 como se explica en el siguiente diagrama

Definir la función

tal que (sumaReiterada xs) es la suma reiterada de los elementos consecutivos de la lista no vacía xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Duplicación de cada elemento

Definir la función

tal que (duplicaElementos xs) es la lista obtenida duplicando cada elemento de xs. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Sistema factorádico de numeración

El sistema factorádico es un sistema numérico basado en factoriales en el que el n-ésimo dígito, empezando desde la derecha, debe ser multiplicado por n! Por ejemplo, el número «341010» en el sistema factorádico es 463 en el sistema decimal ya que

En este sistema numérico, el dígito de más a la derecha es siempre 0, el segundo 0 o 1, el tercero 0,1 o 2 y así sucesivamente.

Con los dígitos del 0 al 9 el mayor número que podemos codificar es el 10!-1 = 3628799. En cambio, si lo ampliamos con las letras A a Z podemos codificar hasta 36!-1 = 37199332678990121746799944815083519999999910.

Definir las funciones

tales que

  • (factoradicoAdecimal cs) es el número decimal correspondiente al número factorádico cs. Por ejemplo,

  • (decimalAfactoradico n) es el número factorádico correpondiente al número decimal n. Por ejemplo,

Comprobar con QuickCheck que, para cualquier entero positivo n,

Soluciones

El código se encuentra en GitHub.

Suma de cadenas

Definir la función

tal que (sumaCadenas xs ys) es la cadena formada por el número entero que es la suma de los números enteros cuyas cadenas que lo representan son xs e ys; además, se supone que la cadena vacía representa al cero. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Cuadrado más cercano

Definir la función

tal que (cuadradoCercano n) es el número cuadrado más cercano a n, donde n es un entero positivo. Por ejemplo,

Soluciones

El código se encuentra en GitHub

La elaboración de las soluciones se muestra en el siguiente vídeo:

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,

  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

Soluciones