Primos hereditarios

Un número primo es hereditario si todos los números obtenidos eliminando dígitos por la derecha o por la izquierda son primos. Por ejemplo, 3797 es hereditario ya que los números obtenidos eliminando dígitos por la derecha son 3797, 379, 37 y 3 y los obtenidos eliminando dígitos por la izquierda son 3797, 797, 97 y 7 y todos ellos son primos.

Definir la sucesión

cuyos elementos son los números hereditarios. Por ejemplo,

Soluciones

Constante de Champernowne

La constante de Champernowne es el número irracional

cuya parte entera es 0 y la parte decimal se obtiene concatenado los números naturales a partir de 1.

Definir la función

tal que (productoChampernowne ns) es el producto de los dígitos de la constante de Champernowne que ocupan las posiciones ns. Por ejemplo,

Soluciones

Producto de un número por una lista de números

El producto de un número natural x por una lista de números naturales ys es el número obtenido concatenando los productos de x por cada uno de los elementos de ys. Por ejemplo, el producto de 2 por [3,2,5] es 26410.

Definir la función

tal que (producto x ys) es el producto de x por ys. Por ejemplo,

Soluciones

Ramas a las que pertenece un elemento

Representamos los árboles binarios con elementos en las hojas y en los nodos mediante el tipo de dato

Por ejemplo,

Definir la función

tal que (ramasCon a x) es la lista de las ramas del árbol a en las que aparece el elemento x. Por ejemplo,

Soluciones

Agrupamiento de consecutivos iguales

Definir las funciones

tales que

  • (agrupa xs) es la lista obtenida agrupando las ocurrencias consecutivas de elementos de xs junto con el número de dichas ocurrencias. Por ejemplo:

  • (expande xs) es la lista expandida correspondiente a ps (es decir, es la lista xs tal que la comprimida de xs es ps. Por ejemplo,

Comprobar con QuickCheck que dada una lista de enteros, si se la agrupa y después se expande se obtiene la lista inicial.

Soluciones

Números de suma prima hereditarios por la derecha

Decimos que un número es de suma prima si la suma de todos sus dígitos es un número primo. Por ejemplo el número 562 es de suma prima pues la suma de sus dígitos es el número primo 13; sin embargo, el número 514 no es de suma prima pues la suma de sus dígitos es 10, que no es primo.

Decimos que un número es de suma prima hereditario por la derecha si es de suma prima y los números que se obtienen eliminando sus últimas cifras también son de suma prima. Por ejemplo 7426 es de suma prima hereditario por la derecha pues 7426, 742, 74 y 7 son todos números de suma prima.

Definir la constante

cuyo valor es la lista infinita de los números de suma prima hereditarios por la derecha. Por ejemplo,

Soluciones

Pares como sumas de pares

Todo número par se puede escribir como suma de números pares de varias formas. Por ejemplo,

Definir la función

tal que (descomposicionesDecrecientes n) es la lista con las descomposiciones de n como suma de pares, en forma decreciente. Por ejemplo,

Soluciones

Caminos maximales en árboles binarios

Consideremos los árboles binarios con etiquetas en las hojas y en los nodos. Por ejemplo,

Un camino es una sucesión de nodos desde la raiz hasta una hoja. Por ejemplo, [5,2] y [5,4,1,2] son caminos que llevan a 2, mientras que [5,4,1] no es un camino, pues no lleva a una hoja.

Definimos el tipo de dato Arbol y el ejemplo por

Definir la función

tal que (maxLong x a) es la longitud máxima de los caminos que terminan en x. Por ejemplo,

Soluciones

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

Definir la función

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

Soluciones

Caminos en un árbol binario

Los caminos en los árboles binarios

son [[I,I],[I,D],[D]] y [[I,I],[I,D],[D,I],[D,D]], donde I indica un movimiento hacia la izquierda y D uno hacia la derecha.

Los árboles binarios se pueden representar por

los movimientos por

y los caminos por

Definir la función

tal que (caminos a) es la lista de los caminos en el árbol binario a. Por ejemplo,

Soluciones

Suma de conjuntos de polinomios

Los conjuntos de polinomios se pueden representar por listas de listas de la misma longitud. Por ejemplo, los polinomios 3x²+5x+9, 10x³+9 y 8x³+5x²+x-1 se pueden representar por las listas [0,3,5,9], [10,0,0,9] y [8,5,1,-1].

Definir la función

tal que (sumaPolinomios ps) es la suma de los polinomios ps. Por ejemplo,

Soluciones

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Soluciones

Segmentos de longitud dada

Definir la función

tal que (segmentos n xs) es la lista de los segmentos de longitud n de la lista xs. Por ejemplo,

Soluciones

Suma de una lista de vectores

Definir la función

tal que (sumaVec xss) es la suma de los vectores de xss. Por ejemplo,

Soluciones

Ordenación según una función

Definir la función

tal que (ordenaSegun f xs) es la lista obtenida ordenando los elementos de xs según sus valores mediante la función f. Por ejemplo,

Comprobar con QuickCheck que (ordenaSegun id) es equivalente a sort.

Soluciones

Máxima suma de los segmentos

Un segmento de una lista xs es una sublista de xs formada por elementos consecutivos en la lista. El problema de la máxima suma de segmentos consiste en dada una lista de números enteros calcular el máximo de las sumas de todos los segmentos de la lista. Por ejemplo, para la lista [-1,2,-3,5,-2,1,3,-2,-2,-3,6] la máxima suma de segmentos es 7 que es la suma del segmento [5,-2,1,3] y para la lista [-1,-2,-3] es 0 que es la suma de la lista vacía.

Definir la función

tal que (mss xs) es la máxima suma de los segmentos de xs. Por ejemplo,

Soluciones

Referencias

2015 y los números con factorización capicúa

Un número tiene factorización capicúa si puede escribir como un producto de números primos tal que la concatenación de sus dígitos forma un número capicúa. Por ejemplo, el 2015 tiene factorización capicúa ya que 2015 = 13·5·31, los factores son primos y su concatenación es 13531 que es capicúa.

Definir la sucesión

formada por los números que tienen factorización capicúa. Por ejemplo,

Usando conFactorizacionesCapicuas escribir expresiones cuyos valores sean las respuestas a las siguientes preguntas y calcularlas

  1. ¿Qué lugar ocupa el 2015 en la sucesión?
  2. ¿Cuál fue el anterior año con factorización capicúa?
  3. ¿Cuál será el siguiente año con factorización capicúa?

Soluciones

Desemparejamiento de listas

Definir la función

tal que (desemparejada ps) es el par de lista (xs,ys) tal que al emparejar (con zip) xs e ys devuelve ps. Por ejemplo,

Comprobar con QuickCheck que

  • desemparejada es equivalente a la función predefinida unzip.
  • si el valor de (desemparejada ps) es (xs,ys), entonces (zip xs ys) es igual a ps.

Soluciones

Repetición de elementos

Enunciado

Soluciones

Código Morse

El código Morse es un sistema de representación de letras y números mediante señales emitidas de forma intermitente.

A los signos (letras mayúsculas o dígitos) se le asigna un código como se muestra a continuación

El código Morse de las palabras se obtiene a partir del de sus caracteres insertando un espacio entre cada uno. Por ejemplo, el código de "todo" es "- --- -.. ---"

El código Morse de las frases se obtiene a partir del de sus palabras insertando dos espacios entre cada uno. Por ejemplo, el código de "todo o nada" es "- --- -.. --- --- -. .- -.. .-"

Enunciado

Ayuda: Se puede usar la función splitOn de la librería Data.List.Split.

Soluciones