Menu Close

Suma de conjuntos de polinomios

Los conjuntos de polinomios se pueden representar por listas de listas de la misma longitud. Por ejemplo, los polinomios 3x²+5x+9, 10x³+9 y 8x³+5x²+x-1 se pueden representar por las listas [0,3,5,9], [10,0,0,9] y [8,5,1,-1].

Definir la función

   sumaPolinomios :: Num a => [[a]] -> [a]

tal que (sumaPolinomios ps) es la suma de los polinomios ps. Por ejemplo,

   ghci> sumaPolinomios1 [[0,3,5,9],[10,0,0,9],[8,5,1,-1]]
   [18,8,6,17]
   ghci> sumaPolinomios6 (replicate 1000000 (replicate 3 1))
   [1000000,1000000,1000000]

Soluciones

import Data.List (transpose)
import Data.Array ((!),accumArray,elems,listArray)
 
-- 1ª definición (por recursión):
sumaPolinomios1 :: Num a => [[a]] -> [a]
sumaPolinomios1 []          = []
sumaPolinomios1 [xs]        = xs
sumaPolinomios1 (xs:ys:zss) = suma xs (sumaPolinomios1 (ys:zss))
 
-- (suma xs ys) es la suma de los vectores xs e ys. Por ejemplo,
--    suma [4,7,3] [1,2,5]  == [5,9,8]
suma :: Num a => [a] -> [a] -> [a]
suma [] []         = []
suma (x:xs) (y:ys) = x+y : suma xs ys
 
-- 2ª definición (por recursión con zipWith): 
sumaPolinomios2 :: Num a => [[a]] -> [a]
sumaPolinomios2 []       = []
sumaPolinomios2 [xs]     = xs
sumaPolinomios2 (xs:xss) = zipWith (+) xs (sumaPolinomios2 xss)
 
-- 3ª definición (por plegado)
sumaPolinomios3 :: Num a => [[a]] -> [a]
sumaPolinomios3 = foldr1 (zipWith (+))
 
-- 4ª definición (por comprensión con transpose):
sumaPolinomios4 :: Num a => [[a]] -> [a]
sumaPolinomios4 xss = [sum xs | xs <- transpose xss]
 
-- 5ª definición (con map y transpose):
sumaPolinomios5 :: Num a => [[a]] -> [a]
sumaPolinomios5 = map sum . transpose 
 
-- 6ª definición (con array)
sumaPolinomios6 :: Num a => [[a]] -> [a]
sumaPolinomios6 xss = [sum [p!(i,j) | i <- [1..m]] | j <- [1..n]] 
    where m = length xss
          n = length (head xss)
          p = listArray ((1,1),(m,n)) (concat xss) 
 
-- 7ª definición (con accumArray)
sumaPolinomios7 :: Num a => [[a]] -> [a]
sumaPolinomios7 xss = 
    elems $ accumArray (+) 0 (1,n) (concat [zip [1..] xs | xs <- xss])
    where n = length (head xss)
 
-- Comparación de eficiencia
--    ghci> sumaPolinomios1 (replicate 300000 (replicate 5 1))
--    [300000,300000,300000,300000,300000]
--    (3.94 secs, 354713532 bytes)
--    
--    ghci> sumaPolinomios2 (replicate 300000 (replicate 5 1))
--    [300000,300000,300000,300000,300000]
--    (2.08 secs, 185506908 bytes)
--    
--    ghci> sumaPolinomios3 (replicate 300000 (replicate 5 1))
--    [300000,300000,300000,300000,300000]
--    (1.48 secs, 167026728 bytes)
--    
--    ghci> sumaPolinomios4 (replicate 300000 (replicate 5 1))
--    [300000,300000,300000,300000,300000]
--    (1.08 secs, 148564752 bytes)
--    
--    ghci> sumaPolinomios5 (replicate 300000 (replicate 5 1))
--    [300000,300000,300000,300000,300000]
--    (1.02 secs, 148062764 bytes)
--    
--    ghci> sumaPolinomios6 (replicate 300000 (replicate 5 1))
--    [300000,300000,300000,300000,300000]
--    (3.17 secs, 463756028 bytes)
--    
--    ghci> sumaPolinomios7 (replicate 300000 (replicate 5 1))
--    [300000,300000,300000,300000,300000]
--    (1.50 secs, 291699548 bytes)
Inicial

3 soluciones de “Suma de conjuntos de polinomios

  1. Jesús Navas Orozco
    sumaPolinomios :: Num a => [[a]] -> [a]
    sumaPolinomios []          = []
    sumaPolinomios [xs]        = xs
    sumaPolinomios (xs:ys:xss) = sumaPolinomios ((zipWith (+) xs ys) : xss)
  2. Pedro Martín Chávez
    sumaPolinomios :: Num a => [[a]] -> [a]
    sumaPolinomios p | all null r = [sum c]
                     | otherwise  = sum c : sumaPolinomios r
                     where c = map head p
                           r = map tail p
  3. Diego
    sumaPolinomios :: Num a => [[a]] -> [a]
    sumaPolinomios = foldr1 (zipWith (+))

Escribe tu solución

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.