Menu Close

Etiqueta: map

Átomos de FNC (fórmulas en forma normal conjuntiva)

Nota: En este ejercicio usaremos las mismas notaciones que en el anterior importando el módulo Evaluacion_de_FNC.

Definir las siguientes funciones

    atomosClausula :: Clausula -> [Atomo]
    atomosFNC      :: FNC -> [Atomo]

tales que

  • (atomosClausula c) es el conjunto de los átomos de la cláusula c. Por ejemplo,
     atomosClausula [3,1,-3] == [1,3]
  • (atomosFNC f) es el conjunto de los átomos de la FNC f. Por ejemplo,
   atomosFNC [[4,5],[1,-2],[-4,-1,-5]]  ==  [1,2,4,5]

Nota: Escribir la solución en el módulo Atomos_de_FNC para poderlo usar en los siguientes ejercicios.

Soluciones

module Atomos_de_FNC where
 
import Evaluacion_de_FNC
import Data.List (sort, nub)
 
-- 1ª definición de atomosClausula
atomosClausula :: Clausula -> [Atomo]
atomosClausula c = sort (nub (map abs c))
 
-- 2ª definición de atomosClausula
atomosClausula2 :: Clausula -> [Atomo]
atomosClausula2 = sort . nub . map abs
 
-- 1ª definición de atomosFNC
atomosFNC :: FNC -> [Atomo]
atomosFNC f = sort (nub (concat [atomosClausula c | c <- f]))
 
-- 2ª definición
atomosFNC2 :: FNC -> [Atomo]
atomosFNC2 f = sort (nub (concatMap atomosClausula f))
 
-- 3ª definición
atomosFNC3 :: FNC -> [Atomo]
atomosFNC3 = sort . nub . concatMap atomosClausula

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“La esencia de las matemáticas es su libertad.”

Georg Cantor.

Máximo número de consecutivos iguales al dado

Definir la función

   maximoConsecutivosIguales :: Eq a => a -> [a] -> Int

tal que (maximoConsecutivosIguales x xs) es el mayor número de elementos consecutivos en xs iguales a x. Por ejemplo,

   maximoConsecutivosIguales 'b' "abbcccbbbd"    ==  3
   maximoConsecutivosIguales 'b' "abbbbcccbbbd"  ==  4
   maximoConsecutivosIguales 'e' "abbcccbbbd"    ==  0

Soluciones

import Data.List (group)
 
maximoConsecutivosIguales :: Eq a => a -> [a] -> Int
maximoConsecutivosIguales x = maximum
                            . (0:)
                            . map length
                            . filter ((== x) . head)
                            . group

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“La programación de computadoras es un arte, porque aplica el conocimiento
acumulado al mundo, porque requiere habilidad e ingenio, y especialmente
porque produce belleza. Un programador que subconscientemente se ve
a sí mismo como un artista disfrutará con lo que hace y lo hará mejor.”

Donald Knuth.

Acotación del primorial

El primorial de un número natural n es el producto de todos los números primos menores o iguales a n. Por ejemplo, el primorial de 5 es 30 porque el producto de los primos menores o iguales que 5 es

   2 * 3 * 5 = 30

La propiedad de Erdös de acotación de los primoriales afirma que

Para todo número natural n, su primorial es menor o igual que 4ⁿ.

Definir las funciones

   primorial :: Integer -> Integer
   primoriales :: [Integer]

tales que

  • (primorial n) es el primorial de n. Por ejemplo,
     primorial 3  ==  6
     primorial 5  ==  30
     primorial 8  ==  210
  • primoriales es la sucesión de los primoriales. Por ejemplo,
   λ> take 15 primoriales
   [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]

Comprobar con QuickCheck la propiedad de Erdös de acotación de los primoriales.

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
 
-- 1ª definición de primorial
-- ==========================
 
primorial :: Integer -> Integer
primorial n = product (takeWhile (<= n) primes)
 
-- 2ª definición de primorial
-- ==========================
 
primorial2 :: Integer -> Integer
primorial2 0 = 1
primorial2 n | gcd n x == 1 = n*x
             | otherwise    = x
  where x = primorial2 (n-1)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> length (show (primorial (5*10^5)))
--    216852
--    (1.65 secs, 2,472,977,584 bytes)
--    λ> length (show (primorial2 (5*10^5)))
--    216852
--    (3.56 secs, 2,719,162,272 bytes)
 
-- 1ª definición de primoriales
-- ============================
 
--    λ> take 15 primoriales
--    [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]
primoriales :: [Integer]
primoriales = map primorial [0..]
 
-- 2ª definición de primoriales
-- ============================
 
--    λ> take 15 primoriales2
--    [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]
primoriales2 :: [Integer]
primoriales2 = map primorial2 [0..]
 
-- 3ª definición de primoriales
-- ============================
 
--    λ> take 15 primoriales3
--    [1,1,2,6,6,30,30,210,210,210,210,2310,2310,30030,30030]
primoriales3 :: [Integer]
primoriales3 = scanl1 f [1..]
  where f x n | gcd n x == 1 = n*x
              | otherwise    = x
 
-- Comparación de eficiencia
-- =========================
 
--    λ> minimum (take 5000 primoriales)
--    1
--    (1.56 secs, 4,857,760,464 bytes)
--    λ> minimum (take 5000 primoriales2)
--    1
--    (9.39 secs, 10,942,848,240 bytes)
--    λ> minimum (take 5000 primoriales3)
--    1
--    (0.01 secs, 5,575,024 bytes)
--    
--    λ> minimum (take 6000 primoriales)
--    1
--    (2.22 secs, 7,013,937,248 bytes)
--    λ> minimum (take 6000 primoriales3)
--    1
--    (0.01 secs, 6,737,328 bytes)
 
-- Propiedad
-- =========
 
prop_primorial :: Integer -> Property
prop_primorial n =
  n >= 0 ==> primorial n <= 4^n
 
-- La comprobación es
--    λ> quickCheck prop_primorial
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“Las matemáticas son la reina de las ciencias y la teoría de los números es la reina de las matemáticas.”

Carl Friedrich Gauss.

Longitud de la parte periódica

La propiedad de la longitud de la parte periódica afirma que

Si p es un número primo distinto de 2 y de 5, entonces la longitud del período de 1/p es el menor entero positivo n tal que p divide a 10^n - 1.

El objetivo de este ejercicio es la verificación de dicha propiedad.

Las fracciones se representan por un par de enteros. Por ejemplo, el número 2/3 se representa por (2,3). Su tipo es

   type Fraccion = (Integer,Integer)

Los números decimales se representan por ternas, donde el primer elemento es la parte entera, el segundo es el anteperíodo y el tercero es el período. Por ejemplo,

 6/2  = 3                  se representa por (3,[],[])
 1/2  = 0.5                se representa por (0,[5],[])
 1/3  = 0.333333...        se representa por (0,[],[3])  
23/14 = 1.6428571428571... se representa por (1,[6],[4,2,8,5,7,1])

Su tipo es

   type Decimal = (Integer,[Integer],[Integer])

Definir, usando las funciones cocientesRestos y primerRepetido de los ejercicios anteriores, las funciones

   decimal :: Fraccion -> Decimal
   longitudPeriodo :: Fraccion -> Integer

tales que

  • (decimal f) es la representación decimal de la fracción f. Por ejemplo,
     decimal (6,2)          ==  (3,[],[])
     decimal (3,4)          ==  (0,[7,5],[])
     decimal (1,3)          ==  (0,[],[3])
     decimal (23,14)        ==  (1,[6],[4,2,8,5,7,1])
     decimal (247813,19980) ==  (12,[4,0],[3,0,5])
     decimal (1,101)        ==  (0,[],[0,0,9,9])
  • (longitudPeriodo f) es la longitud de la parte periódica de la representación decimal de la fracción f. Por ejemplo,
     longitudPeriodo (6,2)           ==  0
     longitudPeriodo (3,4)           ==  0
     longitudPeriodo (1,3)           ==  1
     longitudPeriodo (23,14)         ==  6
     longitudPeriodo (247813,19980)  ==  3
     longitudPeriodo (1,101)         ==  4
     longitudPeriodo (1,1229)        ==  1228

Comprobar con QuickCheck la propiedad de la longitud de la parte periódica; es decir, k es un número natural distinto de 0 y 2 y p es el primo k-ésimo, entonces la longitud del período de 1/p es el menor entero positivo n tal que p divide a 10^n - 1..

Soluciones

import Data.Numbers.Primes
import Test.QuickCheck
 
type Fraccion = (Integer,Integer)
type Decimal = (Integer,[Integer],[Integer])
 
decimal :: Fraccion -> Decimal
decimal (n,d) 
  | snd y == 0 = (fst x, map fst xs, [])
  | otherwise  = (fst x, map fst xs, map fst (y:zs))
  where
    qrs         = cocientesRestos (n,d)
    Just (q,r)  = primerRepetido qrs
    (x:xs,y:ys) = break (==(q,r)) qrs
    zs          = takeWhile (/=(q,r)) ys
 
cocientesRestos :: Fraccion -> [(Integer,Integer)]
cocientesRestos (n,d) =
  (q,r) : cocientesRestos (10*r, d)
  where (q,r) = quotRem n d
 
primerRepetido :: Eq a => [a] -> Maybe a
primerRepetido xs = aux xs []
  where
    aux [] _                     = Nothing
    aux (x:xs') ys | x `elem` ys = Just x
                   | otherwise   = aux xs' (x:ys) 
 
longitudPeriodo :: Fraccion -> Int
longitudPeriodo (n,d) = length xs
  where (_,_,xs) = decimal (n,d)
 
-- La propiedad es
prop_LongitudPeriodo :: Int -> Property
prop_LongitudPeriodo k =
  k > 0 && k /= 2 
  ==>
  longitudPeriodo (1,p) ==
  head [n | n <- [1..], (10^n-1) `mod` p == 0]
  where p = primes !! k
 
-- La comprobación es
--    λ> quickCheck prop_LongitudPeriodo
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“En el desarrollo de la comprensión de los fenómenos complejos, la herramienta más poderosa de que dispone el intelecto humano es la abstracción. La abstracción surge del reconocimiento de las similitudes entre ciertos objetos, situaciones o procesos en el mundo real y de la decisión de concentrarse en estas similitudes e ignorar, por el momento, sus diferencias.”

Tony Hoare

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

   mobius :: Integer -> Integer
   mertens :: Integer -> Integer
   graficaMertens :: Integer -> IO ()

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,
     mobius 6   ==  1
     mobius 30  ==  -1
     mobius 12  ==  0
  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,
     mertens 1     ==  1
     mertens 2     ==  0
     mertens 3     ==  -1
     mertens 5     ==  -2
     mertens 661   ==  -11
     mertens 1403  ==  11
  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck
import Graphics.Gnuplot.Simple
 
mobius :: Integer -> Integer
mobius n | tieneRepetidos xs = 0
         | otherwise         = (-1)^(length xs)
  where xs = primeFactors n
 
tieneRepetidos :: [Integer] -> Bool
tieneRepetidos xs =
  or [x == y | (x,y) <- zip xs (tail xs)]
 
mertens :: Integer -> Integer
mertens n = sum (map mobius [1..n])
 
-- Definición de graficaMertens
-- ============================
 
graficaMertens :: Integer -> IO ()
graficaMertens n = do
  plotLists [ Key Nothing
            , Title "Conjetura de Mertens"
            , PNG "La_conjetura_de_Mertens.png"
            ]
            [ [mertens k | k <- [1..n]]
            , raices
            , map negate raices
            ]
 
  where
    raices = [ceiling (sqrt k) | k <- [1..fromIntegral n]]
 
-- Conjetura de Mertens
-- ====================
 
-- La conjetura es
conjeturaDeMertens :: Integer -> Property
conjeturaDeMertens n =
  n > 1
  ==>
  abs (mertens n) < ceiling (sqrt n')
  where n' = fromIntegral n
 
-- La comprobación es
--    λ> quickCheck conjeturaDeMertens
--    +++ OK, passed 100 tests.

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=”haskell”> y otra con </pre>

Pensamiento

“El control de la complejidad es la esencia de la programación informática.”

Brian Kernighan.