Menu Close

Etiqueta: map

Reparto de escaños por la ley d’Hont

El sistema D’Hondt es una fórmula creada por Victor d’Hondt, que permite obtener el número de cargos electos asignados a las candidaturas, en proporción a los votos conseguidos.

Tras el recuento de los votos, se calcula una serie de divisores para cada partido. La fórmula de los divisores es V/N, donde V representa el número total de votos recibidos por el partido, y N representa cada uno de los números enteros desde 1 hasta el número de cargos electos de la circunscripción objeto de escrutinio. Una vez realizadas las divisiones de los votos de cada partido por cada uno de los divisores desde 1 hasta N, la asignación de cargos electos se hace ordenando los cocientes de las divisiones de mayor a menor y asignando a cada uno un escaño hasta que éstos se agoten

Definir la función

   reparto :: Int -> [Int] -> [(Int,Int)]

tal que (reparto n vs) es la lista de los pares formados por los números de los partidos y el número de escaño que les corresponden al repartir n escaños en función de la lista de sus votos. Por ejemplo,

   ghci> reparto 7 [340000,280000,160000,60000,15000]
   [(1,3),(2,3),(3,1)]
   ghci> reparto 21 [391000,311000,184000,73000,27000,12000,2000]
   [(1,9),(2,7),(3,4),(4,1)]

es decir, en el primer ejemplo,

  • al 1º partido (que obtuvo 340000 votos) le corresponden 3 escaños,
  • al 2º partido (que obtuvo 280000 votos) le corresponden 3 escaños,
  • al 3º partido (que obtuvo 160000 votos) le corresponden 1 escaño.

Soluciones

import Data.List (sort, group)
 
-- Para los ejemplos que siguen, se usará la siguiente ditribución de
-- votos entre 5 partidos.
ejVotos :: [Int]
ejVotos = [340000,280000,160000,60000,15000]
 
-- 1ª solución
-- ===========
 
reparto :: Int -> [Int] -> [(Int,Int)]
reparto n vs = 
  [(x,1 + length xs) | (x:xs) <- group (sort (repartoAux n vs))] 
 
-- (repartoAux n vs) es el número de los partidos, cuyos votos son vs, que
-- obtienen los n escaños. Por ejemplo,
--    ghci> repartoAux 7 ejVotos
--    [1,2,1,3,2,1,2]
repartoAux :: Int -> [Int] -> [Int]
repartoAux n vs = map snd (repartoAux' n vs)
 
-- (repartoAux' n vs) es la lista formada por los n restos mayores
-- correspondientes a la lista de votos vs. Por ejemplo,
--    ghci> repartoAux' 7 ejVotos
--    [(340000,1),(280000,2),(170000,1),(160000,3),(140000,2),(113333,1),
--     (93333,2)]
repartoAux' :: Int -> [Int] -> [(Int,Int)]
repartoAux' n vs = 
  take n (reverse (sort (concatMap (restos n) (votosPartidos vs))))
 
-- (votosPartidos vs) es la lista con los pares formados por los votos y
-- el número de cada partido. Por ejemplo, 
--    ghci> votosPartidos ejVotos
--    [(340000,1),(280000,2),(160000,3),(60000,4),(15000,5)]
votosPartidos :: [Int] -> [(Int,Int)]
votosPartidos vs = zip vs [1..]
 
-- (restos n (x,i)) es la lista obtenidas dividiendo n entre 1, 2,..., n.
-- Por ejemplo, 
--    ghci> restos 5 (340000,1)
--    [(340000,1),(170000,1),(113333,1),(85000,1),(68000,1)]
restos :: Int -> (Int,Int) -> [(Int,Int)]
restos n (x,i) = [(x `div` k,i) | k <- [1..n]]
 
-- 2ª solución
-- ===========
 
reparto2 :: Int -> [Int] -> [(Int,Int)]
reparto2 n xs = 
  ( map (\x -> (head x, length x))  
  . group  
  . sort  
  . map snd  
  . take n  
  . reverse  
  . sort
  ) [(x `div` i, p) | (x,p) <- zip xs [1..], i <- [1..n]]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

   72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, ...

Definir las funciones

   esAquiles              :: Integer -> Bool
   huecosDeAquiles        :: [Integer]
   graficaHuecosDeAquiles :: Int -> IO ()

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,
     esAquiles 108         ==  True
     esAquiles 360         ==  False
     esAquiles 784         ==  False
     esAquiles 5425069447  ==  True
     esAquiles 5425069448  ==  True
  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,
     λ> take 15 huecosDeAquiles
     [36,92,88,104,40,68,148,27,125,64,104,4,153,27,171]
  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
import Graphics.Gnuplot.Simple
 
-- Definición de esAquiles
-- =======================
 
esAquiles :: Integer -> Bool
esAquiles x = esPotente x && noEsPotenciaPerfecta x
 
-- (esPotente x) se verifica si x es potente. Por ejemplo,
--    esPotente 108  ==  True
--    esPotente 360  ==  False
--    esPotente 784  ==  True
esPotente :: Integer -> Bool
esPotente x = all (>1) (exponentes x)
 
-- (exponentes x) es la lista de los exponentes en la factorización de
-- x. Por ejemplo,
--    exponentes 108  ==  [2,3]
--    exponentes 360  ==  [3,2,1]
--    exponentes 784  ==  [4,2]
exponentes :: Integer -> [Int]
exponentes x = map length (group (primeFactors x))
 
-- (noEsPotenciaPerfecta x) se verifica si x no es una potencia
-- perfecta. Por ejemplo,
--    noEsPotenciaPerfecta 108  ==  True
--    noEsPotenciaPerfecta 360  ==  True
--    noEsPotenciaPerfecta 784  ==  False
noEsPotenciaPerfecta :: Integer -> Bool
noEsPotenciaPerfecta x = foldl1 gcd (exponentes x) == 1 
 
-- Definición de huecosDeAquiles
-- =============================
 
huecosDeAquiles :: [Integer]
huecosDeAquiles = zipWith (-) (tail aquiles) aquiles
 
-- aquiles es la sucesión de los números de Aquiles. Por ejemplo, 
--    λ> take 15 aquiles
--    [72,108,200,288,392,432,500,648,675,800,864,968,972,1125,1152]
aquiles :: [Integer]
aquiles = filter esAquiles [2..]
 
-- Definición de graficaHuecosDeAquiles
-- ====================================
 
graficaHuecosDeAquiles :: Int -> IO ()
graficaHuecosDeAquiles n =
  plotList [ Key Nothing
           , PNG "Huecos_de_Aquiles.png"
           ]
           (take n huecosDeAquiles)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Hojas con caminos no decrecientes

Los árboles se pueden representar mediante el siguiente tipo de datos

   data Arbol = N Int [Arbol]
     deriving Show

Por ejemplo, los árboles

         1             1             1  
        /  \          / \           / \ 
       /    \        8   3         8   3
      2      6          /|\       /|\  |
     / \    / \        4 2 6     4 5 6 2
    4   5  5   7

se representan por

   ej1, ej2, ej3 :: Arbol
   ej1 = N 1 [N 2 [N 4 [], N 5 []], N 6 [N 5 [], N 7 []]]
   ej2 = N 1 [N 8 [], N 3 [N 4 [], N 2 [], N 6 []]]
   ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 2 []]]

Definir la función

   hojasEnNoDecreciente :: Arbol -> [Int]

tal que (hojasEnNoDecreciente a) es el conjunto de las hojas de a que se encuentran en alguna rama no decreciente. Por ejemplo,

   hojasEnNoDecreciente ej1  ==  [4,5,7]
   hojasEnNoDecreciente ej2  ==  [4,6,8]
   hojasEnNoDecreciente ej3  ==  []

Soluciones

import Data.List (sort, nub)
 
data Arbol = N Int [Arbol]
  deriving Show
 
ej1, ej2, ej3 :: Arbol
ej1 = N 1 [N 2 [N 4 [], N 5 []], N 6 [N 5 [], N 7 []]]
ej2 = N 1 [N 8 [], N 3 [N 4 [], N 2 [], N 6 []]]
ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 2 []]]
 
-- 1ª solución
-- ===========
 
hojasEnNoDecreciente :: Arbol -> [Int]
hojasEnNoDecreciente a =
  sort (nub (map last (ramasNoDecrecientes a)))
 
--    ramasNoDecrecientes ej1  ==  [[1,2,4],[1,2,5],[1,6,7]]
--    ramasNoDecrecientes ej2  ==  [[1,8],[1,3,4],[1,3,6]]
--    ramasNoDecrecientes ej3  ==  []
ramasNoDecrecientes :: Arbol -> [[Int]]
ramasNoDecrecientes a =
  filter esNoDecreciente (ramas a)
 
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
--    λ> ramas ej1
--    [[1,2,4],[1,2,5],[1,6,5],[1,6,7]]
--    λ> ramas ej2
--    [[1,8],[1,3,4],[1,3,2],[1,3,6]]
--    λ> ramas ej3
--    [[1,8,4],[1,8,5],[1,8,6],[1,3,2]]
ramas :: Arbol -> [[Int]]
ramas (N x []) = [[x]]
ramas (N x as) = map (x:) (concatMap ramas as)
 
-- (esNoDecreciente xs) se verifica si la lista xs es no
-- decreciente. Por ejemplo, 
--    esNoDecreciente [1,3,3,5]  ==  True
--    esNoDecreciente [1,3,5,3]  ==  False
esNoDecreciente :: [Int] -> Bool
esNoDecreciente xs =
  and (zipWith (<=) xs (tail xs))
 
-- 2ª solución
-- ===========
 
--    hojasEnNoDecreciente ej1  ==  [4,5,7]
--    hojasEnNoDecreciente ej2  ==  [4,6,8]
--    hojasEnNoDecreciente ej3  ==  []
hojasEnNoDecreciente2 :: Arbol -> [Int]
hojasEnNoDecreciente2 = sort . nub . aux
  where
    aux (N x []) = [x]
    aux (N x as) = concat [aux (N y bs) | (N y bs) <- as, x <= y]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

   7       es divisible por 1
   74      es divisible por 2
   741     es divisible por 3
   7415 no es divisible por 4

Definir la función

   ordenDeDivisibilidad :: Integer -> Int

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

   ordenDeDivisibilidad 74156                      ==  3
   ordenDeDivisibilidad 12                         ==  2
   ordenDeDivisibilidad 7                          ==  1
   ordenDeDivisibilidad 3608528850368400786036725  ==  25

Soluciones

import Data.List (inits)
 
-- 1ª definición de ordenDeDivisibilidad
-- =====================================
 
ordenDeDivisibilidad :: Integer -> Int
ordenDeDivisibilidad n = 
  length (takeWhile (\(x,k) -> x `mod` k == 0) (zip (sucDigitos n) [1..]))
 
-- (sucDigitos x) es la sucesión de los dígitos de x. Por ejemplo,
--    sucDigitos 325    ==  [3,32,325]
--    sucDigitos 32050  ==  [3,32,320,3205,32050]
sucDigitos :: Integer -> [Integer]
sucDigitos n = 
    [n `div` (10^i) | i <- [k-1,k-2..0]]
    where k = length (show n)
 
-- 2ª definición de sucDigitos
sucDigitos2 :: Integer -> [Integer]
sucDigitos2 n = [read xs | xs <- aux (show n)]
  where aux []     = []
        aux (d:ds) = [d] : map (d:) (aux ds)
 
-- 3ª definición de sucDigitos
sucDigitos3 :: Integer -> [Integer]
sucDigitos3 n = 
  [read (take k ds) | k <- [1..length ds]]
  where ds = show n
 
-- 4ª definición de sucDigitos
sucDigitos4 :: Integer -> [Integer]
sucDigitos4 n = [read xs | xs <- tail (inits (show n))]
 
-- 5ª definición de sucDigitos
sucDigitos5 :: Integer -> [Integer]
sucDigitos5 n = map read (tail (inits (show n)))
 
-- 6ª definición de sucDigitos
sucDigitos6 :: Integer -> [Integer]
sucDigitos6 = map read . (tail . inits . show)
 
-- Eficiencia de las definiciones de sucDigitos
--    ghci> length (sucDigitos (10^5000))
--    5001
--    (0.01 secs, 1550688 bytes)
--    ghci> length (sucDigitos2 (10^5000))
--    5001
--    (1.25 secs, 729411872 bytes)
--    ghci> length (sucDigitos3 (10^5000))
--    5001
--    (0.02 secs, 2265120 bytes)
--    ghci> length (sucDigitos4 (10^5000))
--    5001
--    (1.10 secs, 728366872 bytes)
--    ghci> length (sucDigitos5 (10^5000))
--    5001
--    (1.12 secs, 728393864 bytes)
--    ghci> length (sucDigitos6 (10^5000))
--    5001
--    (1.20 secs, 728403052 bytes)
-- 
--    ghci> length (sucDigitos (10^3000000))
--    3000001
--    (2.73 secs, 820042696 bytes)
--    ghci> length (sucDigitos3 (10^3000000))
--    3000001
--    (3.69 secs, 820043688 bytes)
 
-- 2ª definición de ordenDeDivisibilidad
-- =====================================
 
ordenDeDivisibilidad2 :: Integer -> Int
ordenDeDivisibilidad2 x =
  length
  $ takeWhile (==0)
  $ zipWith (mod . read) (tail $ inits $ show x) [1..]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la fracción continua de Lange

En 1999, L.J. Lange publicó el artículo An elegant new continued fraction for π.

En el primer teorema del artículo se demuestra la siguiente expresión de π mediante una fracción continua
Calculo_de_pi_mediante_la_fraccion_continua_de_Lange

La primeras aproximaciones son

   a(1) = 3+1                = 4.0
   a(2) = 3+(1/(6+9))        = 3.066666666666667
   a(3) = 3+(1/(6+9/(6+25))) = 3.158974358974359

Definir las funciones

   aproximacionPi :: Int -> Double
   grafica        :: [Int] -> IO ()

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fracción continua de Lange. Por ejemplo,
     aproximacionPi 1     ==  4.0
     aproximacionPi 2     ==  3.066666666666667
     aproximacionPi 3     ==  3.158974358974359
     aproximacionPi 10    ==  3.141287132741557
     aproximacionPi 100   ==  3.141592398533554
     aproximacionPi 1000  ==  3.1415926533392926
  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..10]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_2
    (grafica [10..100]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_3
    y (grafica [100..200]) dibuja
    Calculo_de_pi_mediante_la_fraccion_continua_de_Lange_4

Soluciones

import Graphics.Gnuplot.Simple
 
-- fraccionPi es la representación de la fracción continua de pi como un
-- par de listas infinitas.
fraccionPi :: [(Integer, Integer)]
fraccionPi = zip (3 : [6,6..]) (map (^2) [1,3..])
 
-- (aproximacionFC n fc) es la n-ésima aproximación de la fracción
-- continua fc (como un par de listas).  
aproximacionFC :: Int -> [(Integer, Integer)] -> Double
aproximacionFC n =
  foldr (\(a,b) z -> fromIntegral a + fromIntegral b / z) 1 . take n
 
aproximacionPi :: Int -> Double
aproximacionPi n =
  aproximacionFC n fraccionPi
 
grafica :: [Int] -> IO ()
grafica xs = 
  plotList [Key Nothing]
           [(k,aproximacionPi k) | k <- xs]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>