Menu Close

Etiqueta: map

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

   2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3
   2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3
   2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3
   2 + 3 + 3 + 3 + 3 + 3 + 3 + 3

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

   minimoSumandosDigitos        :: Integer -> Integer
   graficaMinimoSumandosDigitos :: Integer -> IO ()

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,
     minimoSumandosDigitos 23    ==  8
     minimoSumandosDigitos 232   ==  78
     minimoSumandosDigitos 2323  ==  775
     map minimoSumandosDigitos [10..20] == [10,11,6,5,5,3,6,5,4,3,10]
  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

import Test.QuickCheck
import Graphics.Gnuplot.Simple
import Data.List (nub, genericLength, sort)
import Data.Array (array, (!))
 
minimoSumandosDigitos :: Integer -> Integer
minimoSumandosDigitos n =
  minimoSumandos (digitos n) n
 
-- (digitos n) es el conjunto de los dígitos no nulos de n. Por ejemplo,
--    digitos 2032  ==  [2,3]
digitos :: Integer -> [Integer]
digitos n =
  nub [read [c] | c <- show n, c /= '0']
 
-- (minimoSumandos xs n) es el menor número de elementos de la lista de
-- enteros positivos xs (con posibles repeticiones) cuya suma es n. Por
-- ejemplo, 
--    minimoSumandos [7,2,4] 11  ==  2
minimoSumandos :: [Integer] -> Integer -> Integer
minimoSumandos xs n =
  minimum (map genericLength (sumas xs n))
 
-- (sumas xs n) es la lista de elementos de la lista de enteros
-- positivos xs (con posibles repeticiones) cuya suma es n. Por ejemplo,  
--    sumas [7,2,4] 11  ==  [[7,2,2],[7,4]]
sumas :: [Integer] -> Integer -> [[Integer]]
sumas [] 0 = [[]]
sumas [] _ = []
sumas (x:xs) n
  | x <= n    = map (x:) (sumas (x:xs) (n-x)) ++ sumas xs n
  | otherwise = sumas xs n
 
-- 2ª solución
-- ===========
 
minimoSumandosDigitos2 :: Integer -> Integer
minimoSumandosDigitos2 n = aux n 
  where
    aux 0 = 0
    aux k = 1 + minimo [aux (k - x) | x <- ds,  k >= x]
    ds    = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- 3ª solución
-- ===========
 
minimoSumandosDigitos3 :: Integer -> Integer
minimoSumandosDigitos3 n = v ! n
  where
    v   = array (0,n) [(i,f i) | i <- [0..n]]
    f 0 = 0
    f k = 1 + minimo [v ! (k - x) | x <- ds, k >= x]
    ds       = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_minimoSumandosDigitos :: Positive Integer -> Bool
prop_minimoSumandosDigitos (Positive n) =
  r1 == r2 && r2 == r3
  where
    r1 = minimoSumandosDigitos n
    r2 = minimoSumandosDigitos n
    r3 = minimoSumandosDigitos n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=9}) prop_minimoSumandosDigitos
--    +++ OK, passed 100 tests.
 
-- Definición de graficaMinimoSumandosDigitos
-- ==========================================
 
graficaMinimoSumandosDigitos :: Integer -> IO ()
graficaMinimoSumandosDigitos n =
  plotList [ Key Nothing
           -- , PNG "Numero_como_suma_de_sus_digitos.png"
           ]
           [minimoSumandosDigitos k | k <- [0..n-1]]

Cambio con el menor número de monedas

El problema del cambio con el menor número de monedas consiste en, dada una lista ms de tipos de monedas (con infinitas monedas de cada tipo) y una cantidad objetivo x, calcular el menor número de monedas de ms cuya suma es x. Por ejemplo, con monedas de 1, 3 y 4 céntimos se puede obtener 6 céntimos de 4 formas

   1, 1, 1, 1, 1, 1
   1, 1, 1, 3
   1, 1, 4
   3, 3

El menor número de monedas que se necesita es 2. En cambio, con monedas de 2, 5 y 10 es imposible obtener 3.

Definir

   monedas :: [Int] -> Int -> Maybe Int

tal que (monedas ms x) es el menor número de monedas de ms cuya suma es x, si es posible obtener dicha suma y es Nothing en caso contrario. Por ejemplo,

   monedas [1,3,4]  6                    ==  Just 2
   monedas [2,5,10] 3                    ==  Nothing
   monedas [1,2,5,10,20,50,100,200] 520  ==  Just 4

Soluciones

import Data.Array ((!), array)
 
-- 1ª solución
-- ===========
 
monedas :: [Int] -> Int -> Maybe Int
monedas ms x
  | null cs   = Nothing
  | otherwise = Just (minimum (map length cs))
  where cs = cambios ms x
 
-- (cambios ms x) es la lista de las foemas de obtener x sumando monedas
-- de ms. Por ejemplo,
--   λ> cambios [1,5,10] 12
--   [[1,1,1,1,1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,5],[1,1,5,5],[1,1,10]]
--   λ> cambios [2,5,10] 3
--   []
--   λ> cambios [1,3,4] 6
--   [[1,1,1,1,1,1],[1,1,1,3],[1,1,4],[3,3]]
cambios :: [Int] -> Int -> [[Int]]
cambios _      0 = [[]]
cambios []     _ = []
cambios (k:ks) m
  | m < k     = []
  | otherwise = [k:zs | zs <- cambios (k:ks) (m - k)] ++
                cambios ks m
 
-- 2ª solución
-- ===========
 
monedas2 :: [Int] -> Int -> Maybe Int
monedas2 ms n
  | sol == infinito = Nothing
  | otherwise       = Just sol
  where
    sol = aux n
    aux 0 = 0
    aux k = siguiente (minimo [aux (k - x) | x <- ms,  k >= x])
 
infinito :: Int
infinito = 10^30
 
minimo :: [Int] -> Int
minimo [] = infinito
minimo xs = minimum xs
 
siguiente :: Int -> Int
siguiente x | x == infinito = infinito
            | otherwise     = 1 + x
 
-- 3ª solución
-- ===========
 
monedas3 :: [Int] -> Int -> Maybe Int
monedas3 ms n  
  | sol == infinito = Nothing
  | otherwise       = Just sol
  where
    sol = v ! n
    v   = array (0,n) [(i,f i) | i <- [0..n]]
    f 0 = 0
    f k = siguiente (minimo [v ! (k - x) | x <- ms, k >= x])
 
-- Comparación de eficiencia
-- =========================
 
--    λ> monedas [1,2,5,10,20,50,100,200] 27
--    Just 3
--    (0.02 secs, 871,144 bytes)
--    λ> monedas2 [1,2,5,10,20,50,100,200] 27
--    Just 3
--    (15.44 secs, 1,866,519,080 bytes)
--    λ> monedas3 [1,2,5,10,20,50,100,200] 27
--    Just 3
--    (0.01 secs, 157,232 bytes)
--    
--    λ> monedas [1,2,5,10,20,50,100,200] 188
--    Just 7
--    (14.20 secs, 1,845,293,080 bytes)
--    λ> monedas3 [1,2,5,10,20,50,100,200] 188
--    Just 7
--    (0.01 secs, 623,376 bytes)

Operaciones con series de potencias

Una serie de potencias es una serie de la forma

   a₀ + a₁x + a₂x² + a₃x³ + ...

Las series de potencias se pueden representar mediante listas infinitas. Por ejemplo, la serie de la función exponencial es

   e^x = 1 + x + x²/2! + x³/3! + ...

y se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, …]

Las operaciones con series se pueden ver como una generalización de las de los polinomios.

En lo que sigue, usaremos el tipo (Serie a) para representar las series de potencias con coeficientes en a y su definición es

   type Serie a = [a]

Definir las siguientes funciones

   opuesta      :: Num a => Serie a -> Serie a
   suma         :: Num a => Serie a -> Serie a -> Serie a
   resta        :: Num a => Serie a -> Serie a -> Serie a
   producto     :: Num a => Serie a -> Serie a -> Serie a
   cociente     :: Fractional a => Serie a -> Serie a -> Serie a
   derivada     :: (Num a, Enum a) => Serie a -> Serie a
   integral     :: (Fractional a, Enum a) => Serie a -> Serie a
   expx         :: Serie Rational

tales que

  • (opuesta xs) es la opuesta de la serie xs. Por ejemplo,
     λ> take 7 (opuesta [-6,-4..])
     [6,4,2,0,-2,-4,-6]
  • (suma xs ys) es la suma de las series xs e ys. Por ejemplo,
     λ> take 7 (suma [1,3..] [2,4..])
     [3,7,11,15,19,23,27]
  • (resta xs ys) es la resta de las series xs es ys. Por ejemplo,
     λ> take 7 (resta [3,5..] [2,4..])
     [1,1,1,1,1,1,1]
     λ> take 7 (resta ([3,7,11,15,19,23,27] ++ repeat 0) [1,3..])
     [2,4,6,8,10,12,14]
  • (producto xs ys) es el producto de las series xs e ys. Por ejemplo,
     λ> take 7 (producto [3,5..] [2,4..])
     [6,22,52,100,170,266,392]
  • (cociente xs ys) es el cociente de las series xs e ys. Por ejemplo,
     λ> take 7 (cociente ([6,22,52,100,170,266,392] ++ repeat 0) [3,5..])
     [2.0,4.0,6.0,8.0,10.0,12.0,14.0]
  • (derivada xs) es la derivada de la serie xs. Por ejemplo,
     λ> take 7 (derivada [2,4..])
     [4,12,24,40,60,84,112]
  • (integral xs) es la integral de la serie xs. Por ejemplo,
     λ> take 7 (integral ([4,12,24,40,60,84,112] ++ repeat 0))
     [0.0,4.0,6.0,8.0,10.0,12.0,14.0]
  • expx es la serie de la función exponencial. Por ejemplo,
     λ> take 8 expx
     [1 % 1,1 % 1,1 % 2,1 % 6,1 % 24,1 % 120,1 % 720,1 % 5040]
     λ> take 8 (derivada expx)
     [1 % 1,1 % 1,1 % 2,1 % 6,1 % 24,1 % 120,1 % 720,1 % 5040]
     λ> take 8 (integral expx)
     [0 % 1,1 % 1,1 % 2,1 % 6,1 % 24,1 % 120,1 % 720,1 % 5040]

Soluciones

type Serie a = [a] 
 
opuesta :: Num a => Serie a -> Serie a
opuesta = map negate
 
suma :: Num a => Serie a -> Serie a -> Serie a
suma = zipWith (+)
 
resta :: Num a => Serie a -> Serie a -> Serie a
resta xs ys = suma xs (opuesta ys)
 
producto :: Num a => Serie a -> Serie a -> Serie a
producto (x:xs) zs@(y:ys) = 
    x*y : suma (producto xs zs) (map (x*) ys)
 
cociente :: Fractional a => Serie a -> Serie a -> Serie a
cociente (x:xs) (y:ys) = zs 
    where zs = x/y : map (/y) (resta xs (producto zs ys))  
 
derivada :: (Num a, Enum a) => Serie a -> Serie a
derivada (_:xs) = zipWith (*) xs [1..]
 
integral :: (Fractional a, Enum a) => Serie a -> Serie a
integral xs = 0 : zipWith (/) xs [1..]
 
expx :: Serie Rational
expx = map (1/) (map fromIntegral factoriales)
 
-- factoriales es la lista de los factoriales. Por ejemplo, 
--    take 7 factoriales  ==  [1,1,2,6,24,120,720]
factoriales :: [Integer]
factoriales = 1 : scanl1 (*) [1..]

Caminos en un grafo

Definir las funciones

   grafo   :: [(Int,Int)] -> Grafo Int Int
   caminos :: Grafo Int Int -> Int -> Int -> [[Int]]

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,
     ghci> grafo [(2,4),(4,5)]
     G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
     [[1,3,5,7],[1,3,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
     [[2,5,3,7],[2,5,7]]
     ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
     [[1,3,5,2],[1,3,7,5,2]]
     ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
     []
     ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
     109601

Soluciones

import Data.List (sort)
import I1M.Grafo
import I1M.BusquedaEnEspaciosDeEstados
 
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
  where ns = map fst as ++ map snd as
        m  = minimum ns
        n  = maximum ns
 
-- 1ª solución
-- ===========
 
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = aux [[b]] where 
  aux [] = []
  aux ((x:xs):yss)
    | x == a    = (x:xs) : aux yss
    | otherwise = aux ([z:x:xs | z <- adyacentes g x
                               , z `notElem` (x:xs)] 
                       ++ yss) 
 
-- 2ª solución (mediante espacio de estados)
-- =========================================
 
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = buscaEE sucesores esFinal inicial
  where inicial          = [b]
        sucesores (x:xs) = [z:x:xs | z <- adyacentes g x
                                   , z `notElem` (x:xs)] 
        esFinal (x:xs)   = x == a
 
-- Comparación de eficiencia
-- =========================
 
--    ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.57 secs, 500533816 bytes)
--    ghci> length (caminos2 (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
--    109601
--    (3.53 secs, 470814096 bytes)

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

   sucLoomis           :: Integer -> [Integer]
   convergencia        :: Integer -> Integer
   graficaConvergencia :: [Integer] -> IO ()

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,
     λ> take 15 (sucLoomis 1)
     [1,2,4,8,16,22,26,38,62,74,102,104,108,116,122]
     λ> take 15 (sucLoomis 2)
     [2,4,8,16,22,26,38,62,74,102,104,108,116,122,126]
     λ> take 15 (sucLoomis 3)
     [3,6,12,14,18,26,38,62,74,102,104,108,116,122,126]
     λ> take 15 (sucLoomis 4)
     [4,8,16,22,26,38,62,74,102,104,108,116,122,126,138]
     λ> take 15 (sucLoomis 5)
     [5,10,11,12,14,18,26,38,62,74,102,104,108,116,122]
     λ> take 15 (sucLoomis 20)
     [20,22,26,38,62,74,102,104,108,116,122,126,138,162,174]
     λ> take 15 (sucLoomis 100)
     [100,101,102,104,108,116,122,126,138,162,174,202,206,218,234]
     λ> sucLoomis 1 !! (2*10^5)
     235180736652
  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,
     convergencia  2      ==  2
     convergencia  3      ==  26
     convergencia  4      ==  4
     convergencia 17      ==  38
     convergencia 19      ==  102
     convergencia 43      ==  162
     convergencia 27      ==  202
     convergencia 58      ==  474
     convergencia 63      ==  150056
     convergencia 81      ==  150056
     convergencia 89      ==  150056
     convergencia (10^12) ==  1000101125092
  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones

import Data.List               ((\\))
import Data.Char               (digitToInt)
import Graphics.Gnuplot.Simple (plotList, Attribute (Key, Title, XRange, PNG))
 
-- 1ª definición de sucLoomis
-- ==========================
 
sucLoomis :: Integer -> [Integer]
sucLoomis x = map (loomis x) [0..]
 
loomis :: Integer -> Integer -> Integer
loomis x 0 = x
loomis x n = y + productoDigitosNoNulos y
  where y = loomis x (n-1)
 
productoDigitosNoNulos :: Integer -> Integer
productoDigitosNoNulos = product . digitosNoNulos
 
digitosNoNulos :: Integer -> [Integer]
digitosNoNulos x =
  [read [c] | c <- show x, c /= '0']
 
-- 2ª definición de sucLoomis
-- ==========================
 
sucLoomis2 :: Integer -> [Integer]
sucLoomis2 = iterate siguienteLoomis 
 
siguienteLoomis :: Integer -> Integer
siguienteLoomis y = y + productoDigitosNoNulos y
 
-- 3ª definición de sucLoomis
-- ==========================
 
sucLoomis3 :: Integer -> [Integer]
sucLoomis3 =
  iterate ((+) <*> product .
           map (toInteger . digitToInt) .
           filter (/= '0') . show)
 
-- Comparación de eficiencia
-- =========================
 
--    λ> sucLoomis 1 !! 30000
--    6571272766
--    (2.45 secs, 987,955,944 bytes)
--    λ> sucLoomis2 1 !! 30000
--    6571272766
--    (2.26 secs, 979,543,328 bytes)
--    λ> sucLoomis3 1 !! 30000
--    6571272766
--    (0.31 secs, 88,323,832 bytes)
 
-- 1ª definición de convergencia
-- =============================
 
convergencia1 :: Integer -> Integer
convergencia1 x =
  head (dropWhile noEnSucLoomisDe1 (sucLoomis x))
 
noEnSucLoomisDe1 :: Integer -> Bool
noEnSucLoomisDe1 x = not (pertenece x sucLoomisDe1)
 
sucLoomisDe1 :: [Integer]
sucLoomisDe1 = sucLoomis 1
 
pertenece :: Integer -> [Integer] -> Bool
pertenece x ys =
  x == head (dropWhile (<x) ys)
 
-- 2ª definición de convergencia
-- =============================
 
convergencia2 :: Integer -> Integer
convergencia2 = aux (sucLoomis3 1) . sucLoomis3
 where aux as@(x:xs) bs@(y:ys) | x == y    = x
                               | x < y     = aux xs bs
                               | otherwise = aux as ys
 
-- 3ª definición de convergencia
-- =============================
 
convergencia3 :: Integer -> Integer
convergencia3 = head . interseccion (sucLoomis3 1) . sucLoomis3
 
-- (interseccion xs ys) es la intersección entre las listas ordenadas xs
-- e ys. Por ejemplo,
--    λ> take 10 (interseccion (sucLoomis3 1) (sucLoomis3 2))
--    [2,4,8,16,22,26,38,62,74,102]
interseccion :: Ord a => [a] -> [a] -> [a]
interseccion = aux
  where aux as@(x:xs) bs@(y:ys) = case compare x y of
                                    LT ->     aux xs bs
                                    EQ -> x : aux xs ys
                                    GT ->     aux as ys
        aux _         _         = []                           
 
-- 4ª definición de convergencia
-- =============================
 
convergencia4 :: Integer -> Integer
convergencia4 x = perteneceA (sucLoomis3 x) 1
  where perteneceA (y:ys) n | y == c    = y
                            | otherwise = perteneceA ys c
          where c = head $ dropWhile (< y) $ sucLoomis3 n
 
-- Comparación de eficiencia
-- =========================
 
--    λ> convergencia1 (10^4)
--    150056
--    (2.94 secs, 1,260,809,808 bytes)
--    λ> convergencia2 (10^4)
--    150056
--    (0.03 secs, 700,240 bytes)
--    λ> convergencia3 (10^4)
--    150056
--    (0.03 secs, 1,165,496 bytes)
--    λ> convergencia4 (10^4)
--    150056
--    (0.02 secs, 1,119,648 bytes)
--    
--    λ> convergencia2 (10^12)
--    1000101125092
--    (1.81 secs, 714,901,080 bytes)
--    λ> convergencia3 (10^12)
--    1000101125092
--    (1.92 secs, 744,932,184 bytes)
--    λ> convergencia4 (10^12)
--    1000101125092
--    (1.82 secs, 941,053,328 bytes)
 
-- Definición de graficaConvergencia
-- ==================================
 
graficaConvergencia :: [Integer] -> IO ()
graficaConvergencia xs =
  plotList [ Key Nothing
           , Title "Convergencia de sucesiones de Loomis"
           , XRange (fromIntegral (minimum xs),fromIntegral (maximum xs))
           , PNG "Las_sucesiones_de_Loomis_2.png"
           ]
           [(x,convergencia2 x) | x <- xs]