Intercambio de la primera y última columna de una matriz

Las matrices se pueden representar mediante listas de listas. Por ejemplo, la matriz

se puede representar por la lista

Definir la función

tal que (intercambia xss) es la matriz obtenida intercambiando la primera y la última columna de xss. Por ejemplo,

Soluciones

Pensamiento

«¡Que difícil es,
cuando todo baja
no bajar también!»

Antonio Machado

Superación de límites

Una sucesión de puntuaciones se puede representar mediante una lista de números. Por ejemplo, [7,5,9,9,4,5,4,2,5,9,12,1]. En la lista anterior, los puntos en donde se alcanzan un nuevo máximo son 7, 9 y 12 (porque son mayores que todos sus anteriores) y en donde se alcanzan un nuevo mínimo son 7, 5, 4, 2 y 1 (porque son menores que todos sus anteriores). Por tanto, el máximo se ha superado 2 veces y el mínimo 4 veces.

Definir las funciones

tales que

  • (nuevosMaximos xs) es la lista de los nuevos máximos de xs. Por ejemplo,

  • (nuevosMinimos xs) es la lista de los nuevos mínimos de xs. Por ejemplo,

  • (nRupturas xs) es el par formado por el número de veces que se supera el máximo y el número de veces que se supera el mínimo en xs. Por ejemplo,

Soluciones

Pensamiento

«Todo necio confunde valor y precio.» ~ Antonio Machado.

Expresiones aritméticas generales

Las expresiones aritméticas. generales se contruyen con las sumas generales (sumatorios) y productos generales (productorios). Su tipo es

Por ejemplo, la expresión (2 * (1 + 2 + 1) * (2 + 3)) + 1 se representa por S [P [N 2, S [N 1, N 2, N 1], S [N 2, N 3]], N 1]

Definir la función

tal que (valor e) es el valor de la expresión e. Por ejemplo,

Soluciones

Pensamiento

Vivir es devorar tiempo, esperar; y por muy trascendente que quiera ser nuestra espera, siempre será espera de seguir esperando.

Antonio Machado

Elemento del árbol binario completo según su posición

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (elementoEnPosicion ms) es el elemento en la posición ms. Por ejemplo,

Soluciones

Pensamiento

Las más hondas palabras
del sabio nos enseñan
lo que el silbar del viento cuando sopla
o el sonar de las aguas cuando ruedan.

Antonio Machado

Posiciones en árboles binarios completos

Un árbol binario completo es un árbol binario que tiene todos los nodos posibles hasta el penúltimo nivel, y donde los elementos del último nivel están colocados de izquierda a derecha sin dejar huecos entre ellos.

La numeración de los árboles binarios completos se realiza a partir de la raíz, recorriendo los niveles de izquierda a derecha. Por ejemplo,

Los árboles binarios se puede representar mediante el siguiente tipo

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 9 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (posicionDeElemento n) es la posición del elemento n en el árbol binario completo. Por ejemplo,

Soluciones

Pensamiento

El ojo que ves no es
ojo porque tú lo veas;
es ojo porque te ve.

Antonio Machado

Posiciones en árboles binarios

Los árboles binarios con datos en los nodos se definen por

Por ejemplo, el árbol

se representa por

Cada posición de un elemento de un árbol es una lista de movimientos hacia la izquierda o hacia la derecha. Por ejemplo, la posición de 4 en al árbol anterior es [I,I,D].

Los tipos de los movimientos y de las posiciones se definen por

Definir la función

tal que (posiciones n a) es la lista de las posiciones del elemento n en el árbol a. Por ejemplo,

Soluciones

Pensamiento

Nunca traces tu frontera,
ni cuides de tu perfil;
todo eso es cosa de fuera.

Antonio Machado

Números colinas

Se dice que un número natural n es una colina si su primer dígito es igual a su último dígito, los primeros dígitos son estrictamente creciente hasta llegar al máximo, el máximo se puede repetir y los dígitos desde el máximo al final son estrictamente decrecientes.

Definir la función

tal que (esColina n) se verifica si n es un número colina. Por ejemplo,

Soluciones

Referencia

Basado en el problema Is this number a hill number? de Code Golf

Pensamiento

Si me tengo que morir
poco me importa aprender.
Y si no puedo saber,
poco me importa vivir.

Antonio Machado

Número medio

Un número medio es número natural que es igual a la media aritmética de las permutaciones de sus dígitos. Por ejemplo, 370 es un número medio ya que las permutaciones de sus dígitos es 073, 037, 307, 370, 703 y 730 cuya media es 2220/6 que es igual a 370.

Definir las siguientes funciones

tales que

  • (numeroMedio n) se verifica si n es un número medio. Por ejemplo,

  • densidades es la lista cuyo elemento n-ésimo (empezando a contar en 1) es la densidad de números medios en el intervalo [1,n]; es decir, la cantidad de números medios menores o iguales que n dividida por n. Por ejemplo,

  • (graficaDensidadNumeroMedio n) dibuja la gráfica de las densidades de
    los intervalos [1,k] para k desde 1 hasta n. Por ejemplo, (graficaDensidadNumeroMedio 100) dibuja

    y (graficaDensidadNumeroMedio 1000) dibuja

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Tren de potencias

Si n es el número natural cuya expansión decimal es abc… , el tren de potencias de n es a^bc^d… donde el último exponente es 1, si n tiene un número impar de dígitos. Por ejemplo

Definir las funciones

tales que

  • (trenDePotencias n) es el tren de potencia de n. Por ejemplo.

  • (esPuntoFijoTrenDePotencias n) se verifica si n es un punto fijo de trenDePotencias; es decir, (trenDePotencias n) es igual a n. Por ejemplo,

  • puntosFijosTrenDePotencias es la lista de los puntso fijos de trenDePotencias. Por ejemplo,

  • (tablaTrenDePotencias a b) es la tabla de los trenes de potencias de los números entre a y b. Por ejemplo,

Comprobar con QuickCheck que entre 2593 y 24547284284866559999999999 la función trenDePotencias no tiene puntos fijos.

Soluciones

Puedes escribir tus soluciones en los comentarios o ver las soluciones propuestas pulsando [expand title=»aquí»]

[/expand]

Sucesión fractal

La sucesión fractal

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales

  • los términos impares forman la misma sucesión original

Definir las funciones

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,

  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,

Soluciones

[schedule expon=’2018-06-19′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios hasta el 17 de mayo.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

[/schedule]

[schedule on=’2018-06-19′ at=»06:00″]

Referencia

+ [Fractal sequences and restricted Nim](http://bit.ly/1WX1IjB) por Lionel Levine.
[/schedule]

Caminos en un grafo

Definir las funciones

tales que

  • (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por ejemplo,

  • (caminos g a b) es la lista los caminos en el grafo g desde a hasta b sin pasar dos veces por el mismo nodo. Por ejemplo,

Soluciones

Problema del dominó

Las fichas del dominó se pueden representar por pares de números enteros. El problema del dominó consiste en colocar todas las fichas de una lista dada de forma que el segundo número de cada ficha coincida con el primero de la siguiente.

Definir la función

tal que (domino fs) es la lista de las soluciones del problema del dominó correspondiente a las fichas fs. Por ejemplo,

Soluciones

El problema de las celebridades

La celebridad de una reunión es una persona al que todos conocen pero que no conoce a nadie. Por ejemplo, si en la reunión hay tres personas tales que la 1 conoce a la 3 y la 2 conoce a la 1 y a la 3, entonces la celebridad de la reunión es la 3.

La relación de conocimiento se puede representar mediante una lista de pares (x,y) indicando que x conoce a y. Por ejemplo, la reunión anterior se puede representar por [(1,3),(2,1),(2,3)].

Definir la función

tal que (celebridad r) es el justo la celebridad de r, si en r hay una celebridad y Nothing, en caso contrario. Por ejemplo,

Soluciones

Sucesión de Recamán

La sucesión de Recamán está definida como sigue:

Definir las funciones

tales que

  • sucRecaman es la lista de los términos de la sucesión de Recamám. Por ejemplo,

  • (invRecaman n) es la primera posición de n en la sucesión de Recamán. Por ejemplo,

  • (graficaSucRecaman n) dibuja los n primeros términos de la sucesión de Recamán. Por ejemplo, (graficaSucRecaman 300) dibuja
    Sucesion_de_Recaman_1
  • (graficaInvRecaman n) dibuja los valores de (invRecaman k) para k entre 0 y n. Por ejemplo, (graficaInvRecaman 17) dibuja
    Sucesion_de_Recaman_2
    y (graficaInvRecaman 100) dibuja
    Sucesion_de_Recaman_3

Soluciones

Problema de las jarras

En el problema de las jarras (A,B,C) se tienen dos jarras sin marcas de medición, una de A litros de capacidad y otra de B. También se dispone de una bomba que permite llenar las jarras de agua.

El problema de las jarras (A,B,C) consiste en determinar cómo se puede lograr tener exactamente C litros de agua en alguna de las dos jarras.

Definir la función

tal (jarras (a,b,c)) es una solución del problema de las jarras (a,b,c) con el mínimo número de movimientos, si el problema tiene solución y Nothing, en caso contrario. Por ejemplo,

La interpretación de la solución anterior es

Otros ejemplos:

Soluciones

Las sucesiones de Loomis

La sucesión de Loomis generada por un número entero positivo x es la sucesión cuyos términos se definen por

  • f(0) es x
  • f(n) es la suma de f(n-1) y el producto de los dígitos no nulos de f(n-1)

Los primeros términos de las primeras sucesiones de Loomis son

  • Generada por 1: 1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, …
  • Generada por 2: 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 3: 3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, …
  • Generada por 4: 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, …
  • Generada por 5: 5, 10, 11, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, …

Se observa que a partir de un término todas coinciden con la generada por 1. Dicho término se llama el punto de convergencia. Por ejemplo,

  • la generada por 2 converge a 2
  • la generada por 3 converge a 26
  • la generada por 4 converge a 4
  • la generada por 5 converge a 26

Definir las siguientes funciones

tales que

  • (sucLoomis x) es la sucesión de Loomis generada por x. Por ejemplo,

  • (convergencia x) es el término de convergencia de la sucesioń de Loomis generada por x xon la geerada por 1. Por ejemplo,

  • (graficaConvergencia xs) dibuja la gráfica de los términos de convergencia de las sucesiones de Loomis generadas por los elementos de xs. Por ejemplo, (graficaConvergencia ([1..50]) dibuja
    Las_sucesiones_de_Loomis_1
    y graficaConvergencia ([1..148] \ [63,81,89,137]) dibuja
    Las_sucesiones_de_Loomis_2

Soluciones