Siembra de listas

Definir la función

tal que (siembra xs) es la lista ys obtenida al repartir cada elemento x de la lista xs poniendo un 1 en las x siguientes posiciones de la lista ys. Por ejemplo,

El tercer ejemplo se obtiene sumando la siembra de 4 en la posición 0 (como el ejemplo 1) y el 2 en la posición 1 (como el ejemplo 2). Otros ejemplos son

Comprobar con QuickCheck que la suma de los elementos de (siembra xs) es igual que la suma de los de xs.

Nota 1: Se supone que el argumento es una lista de números no negativos y que se puede ampliar tanto como sea necesario para repartir los elementos.

Nota 2: Este ejercicio es parte del examen del grupo 3 del 2 de diciembre.

Soluciones

Suma de elementos en posiciones dadas

Definir la función

tal que (sumaEnPosicion xs ys) es la suma de todos los elementos de xs cuyas posiciones se indican en ys. Por ejemplo,

Soluciones

Los números de Armstrong

Un número de n dígitos es un número de Armstrong si es igual a la suma de las n-ésimas potencias de sus dígitos. Por ejemplo, 371, 8208 y 4210818 son números de Armstrong ya que

Definir las funciones

tales que

  • (esArmstrong x) se verifica si x es un número de Armstrong. Por ejemplo,

  • armstrong es la lista cuyos elementos son los números de Armstrong. Por ejemplo,

Comprobar con QuickCheck que los números mayores que
115132219018763992565095597973971522401 no son números de Armstrong.

Soluciones

Repeticiones según la posición

Definir la función

tal que (transformada xs) es la lista obtenida repitiendo cada elemento tantas veces como indica su posición en la lista. Por ejemplo,

Comprobar con QuickCheck si la transformada de una lista de n números enteros, con n ≥ 2, tiene menos de n³ elementos.

Soluciones

Listas de igual longitud

Definir la función

tal que (mismaLongitud xss) se verifica si todas las listas de la lista de listas xss tienen la misma longitud. Por ejemplo,

Soluciones

Rotaciones de un número

Definir la función

(rotacionesNumero n) es la lista de las rotaciones obtenidas desplazando el primer dígito de n al final. Por ejemplo,

Soluciones

Pandigitales múltiplos de un número por una lista de números

Un número pandigital es un número que contiene todos los dígitos del 1 al 9 sólo una vez. Por ejemplo, 192384576 es un número pandigital.

El producto de un número natural x por una lista de números naturales ys es el número obtenido concatenando los productos de x por cada uno de los elementos de ys. Por ejemplo, el producto de 2 por [3,2,5] es 6410.

Un número pandigital x es un múltiplo si existe un y y un n > 1 tales que x es el producto de y por [1,2,3,…,n]. Por ejemplo, 192384576 es un pandigital múltiplo ya que

por tanto, 192384576 es el producto de 192 por [1,2,3]. Otro pandgital múltiplo es el 918273645 ya que es el producto de 9 por [1,2,3,4,5].

Definir la sucesión

tal que sus elementos son los números pandigitales múltiplos. Por ejemplo,

Soluciones

Perímetro más frecuente de triángulos rectángulos

El grado perimetral de un número p es la cantidad de tres triángulos rectángulos de lados enteros cuyo perímetro es p. Por ejemplo, el grado perimetral de 120 es 3 ya que sólo hay 3 triángulos rectángulos de lados enteros cuyo perímetro es 120: {20,48,52}, {24,45,51} y {30,40,50}.

Definir la función

tal que (maxGradoPerimetral n) es el par (m,ps) tal que m es el máximo grado perimetral de los números menores o iguales que n y ps son los perímetros, menores o iguales que n, cuyo grado perimetral es m. Por ejemplo,

Soluciones

Pares de enteros con sólo un factor primo común

Dos enteros positivos a y b se dirán relacionados si poseen, exactamente, un factor primo en común. Por ejemplo, 12 y 20 están relacionados, pero 6 y 30 no lo están.

Definir la lista infinita

tal que paresRel enumera todos los pares (a,b), con 1 ≤ a < b, tal que a y b están relacionados. Por ejemplo,

¿Qué lugar ocupa el par (51,111) en la lista infinita paresRel?

Soluciones

Agrupamiento de consecutivos iguales

Definir las funciones

tales que

  • (agrupa xs) es la lista obtenida agrupando las ocurrencias consecutivas de elementos de xs junto con el número de dichas ocurrencias. Por ejemplo:

  • (expande xs) es la lista expandida correspondiente a ps (es decir, es la lista xs tal que la comprimida de xs es ps. Por ejemplo,

Comprobar con QuickCheck que dada una lista de enteros, si se la agrupa y después se expande se obtiene la lista inicial.

Soluciones

Caminos maximales en árboles binarios

Consideremos los árboles binarios con etiquetas en las hojas y en los nodos. Por ejemplo,

Un camino es una sucesión de nodos desde la raiz hasta una hoja. Por ejemplo, [5,2] y [5,4,1,2] son caminos que llevan a 2, mientras que [5,4,1] no es un camino, pues no lleva a una hoja.

Definimos el tipo de dato Arbol y el ejemplo por

Definir la función

tal que (maxLong x a) es la longitud máxima de los caminos que terminan en x. Por ejemplo,

Soluciones

Sucesión de números parientes

Se dice que dos números naturales son parientes sitienen exactamente un factor primo en común, independientemente de su multiplicidad. Por ejemplo,

  • Los números 12 (2²·3) y 40 (2³·5) son parientes, pues tienen al 2 como único factor primo en común.
  • Los números 49 (7²) y 63 (3²·7) son parientes, pues tienen al 7 como único factor primo en común.
  • Los números 12 (2²·3) y 30 (2·3·5) no son parientes, pues tienen dos factores primos en común.
  • Los números 49 (7²) y 25 (5²) no son parientes, pues no tienen factores primos en común.

Se dice que una lista de números naturales es una secuencia de parientes si cada par de números consecutivos son parientes. Por ejemplo,

  • La lista [12,40,35,28] es una secuencia de parientes.
  • La lista [12,30,21,49] no es una secuencia de parientes.

Definir la función

tal que (secuenciaParientes xs) se verifica si xs es una secuencia de parientes. Por ejemplo,

Soluciones

Números como sumas de primos consecutivos

En el artículo Integers as a sum of consecutive primes in 2,3,4,.. ways se presentan números que se pueden escribir como sumas de primos consecutivos de varias formas. Por ejemplo, el 41 se puede escribir de dos formas distintas

el 240 se puede escribir de tres formas

y el 311 se puede escribir de 4 formas

Definir la función

tal que (sumas x) es la lista de las formas de escribir x como suma de dos o más números primos consecutivos. Por ejemplo,

Soluciones

Actualización de una lista

Definir la función

tal que (actualiza xs ps) es la lista obtenida sustituyendo en xs los elementos cuyos índices son las primeras componentes de ps por las segundas. Por ejemplo,

Soluciones

Orden de divisibilidad

El orden de divisibilidad de un número x es el mayor n tal que para todo i menor o igual que n, los i primeros dígitos de n es divisible por i. Por ejemplo, el orden de divisibilidad de 74156 es 3 porque

Definir la función

tal que (ordenDeDivisibilidad x) es el orden de divisibilidad de x. Por ejemplo,

Soluciones

Listas con los ceros emparejados

Sea S un conjunto de números. Las listas de ceros emparejados de S son las listas formadas con los elementos de S y en las cuales los ceros aparecen en sublistas de longitud par. Por ejemplo, si S = {0,1,2} entonces [1], [2], [2,1], [2,0,0,2,0,0,1] y [0,0,0,0,1,2] son listas de ceros emparejados de S; pero [0,0,0,2,1,0,0] y [0,0,1,0,1] no lo son.

Definir las funciones

tales que
+ (cerosEmparejados m n) es la lista de las listas de longitud n de ceros emparejados con los números 0, 1, 2,…, m. Por ejemplo,

  • (nCerosEmparejados m n) es el número de listas de longitud n de ceros emparejados con los números 0, 1, 2,…, m. Por ejemplo,

Soluciones

Cálculo del número de islas rectangulares en una matriz

En este problema se consideran matrices cuyos elementos son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares separadas por 0 de forma que como máximo las islas son diagonalmente adyacentes. Por ejemplo,

Definir la función

tal que (numeroDeIslas p) es el número de islas de la matriz p. Por ejemplo,

Soluciones

Suma de conjuntos de polinomios

Los conjuntos de polinomios se pueden representar por listas de listas de la misma longitud. Por ejemplo, los polinomios 3x²+5x+9, 10x³+9 y 8x³+5x²+x-1 se pueden representar por las listas [0,3,5,9], [10,0,0,9] y [8,5,1,-1].

Definir la función

tal que (sumaPolinomios ps) es la suma de los polinomios ps. Por ejemplo,

Soluciones

Mínimo número de cambios para igualar una lista

Definir la función

tal que (nMinimoCambios xs) es el menor número de elementos de xs que hay que cambiar para que todos sean iguales. Por ejemplo,

En el primer ejemplo, los elementos que hay que cambiar son 5, 7, 9 y 6.

Soluciones

Mayor producto de n dígitos consecutivos de un número

Definir la función

tal que (mayorProducto n x) es el mayor producto de n dígitos consecutivos del número x (suponiendo que x tiene al menos n dígitos). Por ejemplo,

Soluciones

Segmentos de longitud dada

Definir la función

tal que (segmentos n xs) es la lista de los segmentos de longitud n de la lista xs. Por ejemplo,

Soluciones

Menor número triangular con más de n divisores

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, el 7º número triangular es

Los primeros 10 números triangulares son

Los divisores de los primeros 7 números triangulares son:

Como se puede observar, 28 es el menor número triangular con más de 5 divisores.

Definir la función

tal que (menorTriangularConAlMenosNDivisores n) es el menor número triangular que tiene al menos n divisores. Por ejemplo,

Soluciones

Posición del primer falso en un vector

Excercitium

Definir la función

tal que (posicion v) es la menor posición del vector de booleanos v cuyo valor es falso y es Nothing si todos los valores son verdaderos. Por ejemplo,

Soluciones

Sustitución de listas

Definir la función

tal que (sustituye xs ys zs) es la lista obtenida sustituyendo las ocurrencias de la lista no vacía xs en zs por ys. Por ejemplo,

Soluciones

Suma de una lista de vectores

Definir la función

tal que (sumaVec xss) es la suma de los vectores de xss. Por ejemplo,

Soluciones

2015 y los números con factorización capicúa

Un número tiene factorización capicúa si puede escribir como un producto de números primos tal que la concatenación de sus dígitos forma un número capicúa. Por ejemplo, el 2015 tiene factorización capicúa ya que 2015 = 13·5·31, los factores son primos y su concatenación es 13531 que es capicúa.

Definir la sucesión

formada por los números que tienen factorización capicúa. Por ejemplo,

Usando conFactorizacionesCapicuas escribir expresiones cuyos valores sean las respuestas a las siguientes preguntas y calcularlas

  1. ¿Qué lugar ocupa el 2015 en la sucesión?
  2. ¿Cuál fue el anterior año con factorización capicúa?
  3. ¿Cuál será el siguiente año con factorización capicúa?

Soluciones

Enumeración de los pares de números naturales

Los pares de los números naturales se pueden ordenar por la suma de sus componentes y entre los pares con la misma suma elegir antes al que tiene mayos su primera componente.

Definir la función

tal que pares es la lista de los pares de números naturales con el orden anterior. por ejemplo,

Usando la definición de pares, definir la función

tal que (posicion p) es la posición del par p en la lista pares. Por ejemplo,

Finalmente, comprobar con QuickCheck que para cualquier par (x,y) de números naturales, la (posicion (x,y)) es igual a (y + (x+y+1)*(x+y) div 2).

Nota. En la comprobación usar

Soluciones

2015, suma de dígitos y número de divisores

Una propiedad del 2015 es que la suma de sus dígitos coincide con el número de sus divisores; en efecto, la suma de sus dígitos es 2+0+1+5=8 y tiene 8 divisores (1, 5, 13, 31, 65, 155, 403 y 2015).

Definir la sucesión

formada por los números n tales que la suma de los dígitos de n coincide con el número de divisores de n. Por ejemplo,

Usar la sucesión para responder las siguientes cuestiones

  • ¿Cuántos años hasta el 2015 inclusive han cumplido la propiedad?
  • ¿Cuál fue el anterior al 2015 que cumplió la propiedad?
  • ¿Cuál será el siguiente al 2015 que cumplirá la propiedad?

Nota: La sucesión especiales es la misma que la A057531 de la OEIS (On-Line Encyclopedia of Integer Sequences).

Soluciones

Representaciones de matrices

Enunciado

Soluciones

Llanuras de longitud dada

Enunciado

Soluciones

Referencias

Esté ejercicio está basado en el problema Llanura de números iguales con longitud igual a n propuesto Solveet!