Menu Close

Etiqueta: iterate

Reconocimiento de potencias de 2

Definir la función

   esPotenciaDeDos :: Integer -> Bool

tal que (esPotenciaDeDos n) se verifica si n es una potencia de dos (suponiendo que n es mayor que 0). Por ejemplo.

   esPotenciaDeDos    1        == True
   esPotenciaDeDos    2        == True
   esPotenciaDeDos    6        == False
   esPotenciaDeDos    8        == True
   esPotenciaDeDos 1024        == True
   esPotenciaDeDos 1026        == False
   esPotenciaDeDos (2^(10^8))  == True

Soluciones

import Data.Bits ((.&.))
import Data.Numbers.Primes (primeFactors)
import Test.QuickCheck (Positive (Positive), quickCheck)
 
-- 1ª solución
-- ===========
 
esPotenciaDeDos1 :: Integer -> Bool
esPotenciaDeDos1 1 = True
esPotenciaDeDos1 n
  | even n    = esPotenciaDeDos1 (n `div` 2)
  | otherwise = False
 
-- 2ª solución
-- ===========
 
esPotenciaDeDos2 :: Integer -> Bool
esPotenciaDeDos2 n = n ==
  head (dropWhile (<n) potenciasDeDos)
 
-- potenciasDeDos es la lista de las potencias de dos. Por ejemplo,
--    take 10 potenciasDeDos  == [1,2,4,8,16,32,64,128,256,512]
potenciasDeDos :: [Integer]
potenciasDeDos = iterate (*2) 1
 
-- 3ª solución
-- ===========
 
esPotenciaDeDos3 :: Integer -> Bool
esPotenciaDeDos3 x = all (==2) (primeFactors x)
 
-- 4ª solución
-- ===========
 
-- Usando la función (.&.) de la librería Data.Bits. Dicha función
-- calcula el número correspondiente a la conjunción de las
-- representaciones binarias de sus argumentos. Por ejemplo,
--    6 .&. 3 == 2
-- ya que
--    la representación binaria de 6 es     [1,1,0]
--    la representación binaria de 3 es       [1,1]
--    la conjunción es                        [1,0]
--    la representación decimal de [1,0] es   2
--
-- Otros ejemplos:
--    4 .&. 3 ==   [1,0,0] .&.   [1,1] == 0
--    8 .&. 7 == [1,0,0,0] .&. [1,1,1] = 0
 
esPotenciaDeDos4 :: Integer -> Bool
esPotenciaDeDos4 n = n .&. (n-1) == 0
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_esPotenciaDeDos :: Positive Integer -> Bool
prop_esPotenciaDeDos (Positive n) =
  all (== esPotenciaDeDos1 n)
      [ esPotenciaDeDos2 n
      , esPotenciaDeDos3 n
      , esPotenciaDeDos4 n
      ]
 
-- La comprobación es
--    λ> quickCheck prop_esPotenciaDeDos
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> esPotenciaDeDos1 (2^(3*10^5))
--    True
--    (3.51 secs, 5,730,072,544 bytes)
--    λ> esPotenciaDeDos2 (2^(3*10^5))
--    True
--    (3.12 secs, 5,755,639,952 bytes)
--    λ> esPotenciaDeDos3 (2^(3*10^5))
--    True
--    (2.92 secs, 5,758,872,040 bytes)
--    λ> esPotenciaDeDos4 (2^(3*10^5))
--    True
--    (0.03 secs, 715,152 bytes)

El código se encuentra en GitHub.

Números con todos sus dígitos primos

Definir la lista

   numerosConDigitosPrimos :: [Integer]

cuyos elementos son los números con todos sus dígitos primos. Por ejemplo,

   λ> take 22 numerosConDigitosPrimos
   [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
   λ> numerosConDigitosPrimos !! (10^7)
   322732232572

Soluciones

module Numeros_con_digitos_primos where
 
import Test.QuickCheck (NonNegative (NonNegative), quickCheck)
import Data.Char (intToDigit)
 
-- 1ª solución
-- ===========
 
numerosConDigitosPrimos1 :: [Integer]
numerosConDigitosPrimos1 = [n | n <- [2..], digitosPrimos n]
 
-- (digitosPrimos n) se verifica si todos los dígitos de n son
-- primos. Por ejemplo,
--    digitosPrimos 352  ==  True
--    digitosPrimos 362  ==  False
digitosPrimos :: Integer -> Bool
digitosPrimos n = subconjunto (digitos n) [2,3,5,7]
 
-- (digitos n) es la lista de las digitos de n. Por ejemplo,
--    digitos 325  ==  [3,2,5]
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]
 
-- (subconjunto xs ys) se verifica si xs es un subconjunto de ys. Por
-- ejemplo,
--    subconjunto [3,2,5,2] [2,7,3,5]  ==  True
--    subconjunto [3,2,5,2] [2,7,2,5]  ==  False
subconjunto :: Eq a => [a] -> [a] -> Bool
subconjunto xs ys = and [x `elem` ys | x <- xs]
 
-- 2ª solución
-- ===========
 
numerosConDigitosPrimos2 :: [Integer]
numerosConDigitosPrimos2 =
  filter (all (`elem` "2357") . show) [2..]
 
-- 3ª solución
-- ===========
 
--    λ> take 60 numerosConDigitosPrimos2
--    [  2,  3,  5,  7,
--      22, 23, 25, 27,
--      32, 33, 35, 37,
--      52, 53, 55, 57,
--      72, 73, 75, 77,
--     222,223,225,227,
--     232,233,235,237,
--     252,253,255,257,
--     272,273,275,277,
--     322,323,325,327,
--     332,333,335,337,
--     352,353,355,357,
--     372,373,375,377,
--     522,523,525,527,
--     532,533,535,537]
 
numerosConDigitosPrimos3 :: [Integer]
numerosConDigitosPrimos3 =
  [2,3,5,7] ++ [10*n+d | n <- numerosConDigitosPrimos3, d <- [2,3,5,7]]
 
-- 4ª solución
-- ===========
 
--    λ> take 60 numerosConDigitosPrimos2
--    [ 2, 3, 5, 7,
--     22,23,25,27,
--     32,33,35,37,
--     52,53,55,57,
--     72,73,75,77,
--     222,223,225,227, 232,233,235,237, 252,253,255,257, 272,273,275,277,
--     322,323,325,327, 332,333,335,337, 352,353,355,357, 372,373,375,377,
--     522,523,525,527, 532,533,535,537]
 
numerosConDigitosPrimos4 :: [Integer]
numerosConDigitosPrimos4 = concat (iterate siguiente [2,3,5,7])
 
-- (siguiente xs) es la lista obtenida añadiendo delante de cada
-- elemento de xs los dígitos 2, 3, 5 y 7. Por ejemplo,
--    λ> siguiente [5,6,8]
--    [25,26,28,
--     35,36,38,
--     55,56,58,
--     75,76,78]
siguiente :: [Integer] -> [Integer]
siguiente xs = concat [map (pega d) xs | d <- [2,3,5,7]]
 
-- (pega d n) es el número obtenido añadiendo el dígito d delante del
-- número n. Por ejemplo,
--    pega 3 35  ==  335
pega :: Int -> Integer -> Integer
pega d n = read (intToDigit d : show n)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_numerosConDigitosPrimos :: NonNegative Int -> Bool
prop_numerosConDigitosPrimos (NonNegative n) =
  all (== numerosConDigitosPrimos1 !! n)
      [ numerosConDigitosPrimos2 !! n
      , numerosConDigitosPrimos3 !! n
      , numerosConDigitosPrimos4 !! n
      ]
 
-- La comprobación es
--    λ> quickCheck prop_numerosConDigitosPrimos
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> numerosConDigitosPrimos1 !! 5000
--    752732
--    (2.45 secs, 6,066,926,272 bytes)
--    λ> numerosConDigitosPrimos2 !! 5000
--    752732
--    (0.34 secs, 387,603,456 bytes)
--    λ> numerosConDigitosPrimos3 !! 5000
--    752732
--    (0.01 secs, 1,437,624 bytes)
--    λ> numerosConDigitosPrimos4 !! 5000
--    752732
--    (0.00 secs, 1,556,104 bytes)
--
--    λ> numerosConDigitosPrimos3 !! (10^7)
--    322732232572
--    (3.94 secs, 1,820,533,328 bytes)
--    λ> numerosConDigitosPrimos4 !! (10^7)
--    322732232572
--    (1.84 secs, 2,000,606,640 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Reiteración de una función

Definir la función

   reiteracion :: (a -> a) -> Int -> a -> a

tal que (reiteracion f n x) es el resultado de aplicar n veces la función f a x. Por ejemplo,

   reiteracion (+1) 10 5  ==  15
   reiteracion (+5) 10 0  ==  50
   reiteracion (*2)  4 1  ==  16
   reiteracion (5:)  4 [] ==  [5,5,5,5]

Soluciones

import Test.QuickCheck (Fun (..), Positive (..), quickCheck)
 
-- 1ª solución
-- ===========
 
reiteracion1 :: (a -> a) -> Int -> a -> a
reiteracion1 _ 0 x = x
reiteracion1 f n x = f (reiteracion1 f (n-1) x)
 
-- 2ª solución
-- ===========
 
reiteracion2 :: (a -> a) -> Int -> a -> a
reiteracion2 _ 0 = id
reiteracion2 f n = f . reiteracion2 f (n-1)
 
-- 3ª solución
-- ===========
 
reiteracion3 :: (a -> a) -> Int -> a -> a
reiteracion3 _ 0 = id
reiteracion3 f n
  | even n    = reiteracion3 (f . f) (n `div` 2)
  | otherwise = f . reiteracion3 (f . f) (n `div` 2)
 
-- 4ª solución
-- ===========
 
reiteracion4 :: (a -> a) -> Int -> a -> a
reiteracion4 f n x = reiteraciones f x !! n
 
reiteraciones :: (a -> a) -> a -> [a]
reiteraciones f x = x : reiteraciones f (f x)
 
-- 5ª solución
-- ===========
 
reiteracion5 :: (a -> a) -> Int -> a -> a
reiteracion5 f n x = (iterate f x) !! n
 
-- 6ª solución
-- ===========
 
-- Se puede eliminar los argumentos de la definición anterior como sigue:
--    reiteracion4 f n x = iterate f x !! n
--    reiteracion4 f n x = ((!!) (iterate f x)) n
--    reiteracion4 f n x = (((!!) . (iterate f)) x) n
--    reiteracion4 f n x = ((!!) . (iterate f)) x n
--    reiteracion4 f n x = flip ((!!) . (iterate f)) n x
--    reiteracion4 f = flip ((!!) . (iterate f))
--    reiteracion4 f = flip (((!!) .) (iterate f))
--    reiteracion4 f = flip (((!!) .) . iterate) f
--    reiteracion4 f = (flip . ((!!) .) . iterate) f
--    reiteracion4   = flip . ((!!) .) . iterate
 
reiteracion6 :: (a -> a) -> Int -> a -> a
reiteracion6 = flip . ((!!) .) . iterate
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_reiteracion :: Fun Int Int -> Positive Int -> Int -> Bool
prop_reiteracion (Fun _ f) (Positive n) x =
  all (== reiteracion1 f n x)
      [reiteracion2 f n x,
       reiteracion3 f n x,
       reiteracion4 f n x,
       reiteracion5 f n x,
       reiteracion6 f n x]
 
-- La comprobación es
--    λ> quickCheck prop_reiteracion
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> reiteracion1 (+1) (10^7) 0
--    10000000
--    (5.09 secs, 2,505,392,792 bytes)
--    λ> reiteracion2 (+1) (10^7) 0
--    10000000
--    (5.45 secs, 2,896,899,728 bytes)
--    λ> reiteracion3 (+1) (10^7) 0
--    10000000
--    (2.14 secs, 816,909,416 bytes)
--    λ> reiteracion4 (+1) (10^7) 0
--    10000000
--    (4.24 secs, 1,696,899,816 bytes)
--    λ> reiteracion5 (+1) (10^7) 0
--    10000000
--    (2.53 secs, 1,376,899,800 bytes)
--    λ> reiteracion6 (+1) (10^7) 0
--    10000000
--    (2.34 secs, 1,376,899,984 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Sucesión duplicadora

Para cada entero positivo n, existe una única sucesión que empieza en 1, termina en n y en la que cada uno de sus elementos es el doble de su anterior o el doble más uno. Dicha sucesión se llama la sucesión duplicadora de n. Por ejemplo, la sucesión duplicadora de 13 es [1, 3, 6, 13], ya que

    3 = 2*1 +1
    6 = 2*3
   13 = 2*6 +1

Definir la función

   duplicadora :: Integer -> [Integer]

tal que (duplicadora n) es la sucesión duplicadora de n. Por ejemplo,

   duplicadora 13                   ==  [1,3,6,13]
   duplicadora 17                   ==  [1,2,4,8,17]
   length (duplicadora (10^40000))  ==  132878

Soluciones

-- 1ª definición
duplicadora :: Integer -> [Integer]
duplicadora x =
  reverse (takeWhile (>=1) (iterate (`div` 2) x))
 
-- 2ª definición
duplicadora2 :: Integer -> [Integer]
duplicadora2  =
  reverse . takeWhile (>=1) . iterate (`div` 2)

Cadenas de primos complementarios

El complemento de un número positivo x se calcula por el siguiente procedimiento:

  • si x es mayor que 9, se toma cada dígito por su valor posicional y se resta del mayor los otro dígitos. Por ejemplo, el complemento de 1448 es 1000 – 400 – 40 – 8 = 552. Para
  • si x es menor que 10, su complemento es x.

Definir las funciones

   cadena    :: Integer -> [Integer]
   conCadena :: Int -> [Integer]

tales que

  • (cadena x) es la cadena de primos a partir de x tal que cada uno es el complemento del anterior. Por ejemplo,
     cadena 8         == []
     cadena 7         == [7]
     cadena 13        == [13,7]
     cadena 643       == [643,557,443]
     cadena 18127     == [18127,1873,127,73,67,53,47]
     cadena 18181213  == [18181213,1818787,181213,18787,1213,787,613,587]
  • (conCadena n) es la lista de números cuyas cadenas tienen n elementos. Por ejemplo,
     take 6 (conCadena 3)                == [23,31,61,67,103,307]
     [head (conCadena n) | n <- [4..8]]  == [37,43,157,18127,181873]

Soluciones

 
import Data.Numbers.Primes
 
-- (complemento x) es le complemento de x. Por ejemplo,
--    complemento 1448  == 552
--    complemento  639  == 561
--    complemento    7  == 7
complemento :: Integer -> Integer
complemento x = (div x c)*c - (rem x c)
  where c = 10^(length (show x) - 1)          
 
cadena :: Integer -> [Integer]
cadena x    
  | x < 10 && isPrime x = [x]
  | otherwise           = takeWhile isPrime (iterate f x)
  where f x | x < 10 && isPrime x = 0
            | otherwise           = complemento x
 
conCadena :: Int -> [Integer]
conCadena n =
  [y | y <- primes, length (cadena y) == n]