Números muy pares

Un entero positivo x es muy par si tanto x como x² sólo contienen cifras pares. Por ejemplo, 200 es muy par porque todas las cifras de 200 y 200² = 40000 son pares; pero 26 no lo es porque 26² = 676 tiene cifras impares.

Definir la función

tal que (siguienteMuyPar x) es menor número mayor que x que es muy par. Por ejemplo,

Soluciones

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

Definir la función

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

Nótese que en el penúltimo ejemplo las reducciones son

Soluciones

Pandigitales múltiplos de un número por una lista de números

Un número pandigital es un número que contiene todos los dígitos del 1 al 9 sólo una vez. Por ejemplo, 192384576 es un número pandigital.

El producto de un número natural x por una lista de números naturales ys es el número obtenido concatenando los productos de x por cada uno de los elementos de ys. Por ejemplo, el producto de 2 por [3,2,5] es 6410.

Un número pandigital x es un múltiplo si existe un y y un n > 1 tales que x es el producto de y por [1,2,3,…,n]. Por ejemplo, 192384576 es un pandigital múltiplo ya que

por tanto, 192384576 es el producto de 192 por [1,2,3]. Otro pandgital múltiplo es el 918273645 ya que es el producto de 9 por [1,2,3,4,5].

Definir la sucesión

tal que sus elementos son los números pandigitales múltiplos. Por ejemplo,

Soluciones

Agrupamiento de consecutivos iguales

Definir las funciones

tales que

  • (agrupa xs) es la lista obtenida agrupando las ocurrencias consecutivas de elementos de xs junto con el número de dichas ocurrencias. Por ejemplo:

  • (expande xs) es la lista expandida correspondiente a ps (es decir, es la lista xs tal que la comprimida de xs es ps. Por ejemplo,

Comprobar con QuickCheck que dada una lista de enteros, si se la agrupa y después se expande se obtiene la lista inicial.

Soluciones

Productos simultáneos de dos y tres números consecutivos

Definir la función

tal que (productos n x) es las listas de n elementos consecutivos cuyo producto es x. Por ejemplo,

Comprobar con QuickCheck que si n > 0 y x > 0, entonces

Usando productos, definir la función

cuyos elementos son los números naturales (no nulos) que pueden expresarse simultáneamente como producto de dos y tres números consecutivos. Por ejemplo,

Nota. Según demostró Mordell en 1962, productosDe2y3consecutivos sólo tiene dos elementos.

Soluciones

Suma de conjuntos de polinomios

Los conjuntos de polinomios se pueden representar por listas de listas de la misma longitud. Por ejemplo, los polinomios 3x²+5x+9, 10x³+9 y 8x³+5x²+x-1 se pueden representar por las listas [0,3,5,9], [10,0,0,9] y [8,5,1,-1].

Definir la función

tal que (sumaPolinomios ps) es la suma de los polinomios ps. Por ejemplo,

Soluciones

Menor número triangular con más de n divisores

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, el 7º número triangular es

Los primeros 10 números triangulares son

Los divisores de los primeros 7 números triangulares son:

Como se puede observar, 28 es el menor número triangular con más de 5 divisores.

Definir la función

tal que (menorTriangularConAlMenosNDivisores n) es el menor número triangular que tiene al menos n divisores. Por ejemplo,

Soluciones

Mayor capicúa producto de dos números de n cifras

Un capicúa es un número que es igual leído de izquierda a derecha que de derecha a izquierda.

Definir la función

tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de dos números de n cifras. Por ejemplo,

Soluciones

Posición del primer falso en un vector

Excercitium

Definir la función

tal que (posicion v) es la menor posición del vector de booleanos v cuyo valor es falso y es Nothing si todos los valores son verdaderos. Por ejemplo,

Soluciones

Suma de una lista de vectores

Definir la función

tal que (sumaVec xss) es la suma de los vectores de xss. Por ejemplo,

Soluciones

2015 y los números con factorización capicúa

Un número tiene factorización capicúa si puede escribir como un producto de números primos tal que la concatenación de sus dígitos forma un número capicúa. Por ejemplo, el 2015 tiene factorización capicúa ya que 2015 = 13·5·31, los factores son primos y su concatenación es 13531 que es capicúa.

Definir la sucesión

formada por los números que tienen factorización capicúa. Por ejemplo,

Usando conFactorizacionesCapicuas escribir expresiones cuyos valores sean las respuestas a las siguientes preguntas y calcularlas

  1. ¿Qué lugar ocupa el 2015 en la sucesión?
  2. ¿Cuál fue el anterior año con factorización capicúa?
  3. ¿Cuál será el siguiente año con factorización capicúa?

Soluciones

Período de una lista

El período de una lista xs es la lista más corta ys tal que xs se puede obtener concatenando varias veces la lista ys. Por ejemplo, el período «abababab» es «ab» ya que «abababab» se obtiene repitiendo tres veces la lista «ab».

Definir la función

tal que (periodo xs) es el período de xs. Por ejemplo,

Soluciones

2015, suma de dígitos y número de divisores

Una propiedad del 2015 es que la suma de sus dígitos coincide con el número de sus divisores; en efecto, la suma de sus dígitos es 2+0+1+5=8 y tiene 8 divisores (1, 5, 13, 31, 65, 155, 403 y 2015).

Definir la sucesión

formada por los números n tales que la suma de los dígitos de n coincide con el número de divisores de n. Por ejemplo,

Usar la sucesión para responder las siguientes cuestiones

  • ¿Cuántos años hasta el 2015 inclusive han cumplido la propiedad?
  • ¿Cuál fue el anterior al 2015 que cumplió la propiedad?
  • ¿Cuál será el siguiente al 2015 que cumplirá la propiedad?

Nota: La sucesión especiales es la misma que la A057531 de la OEIS (On-Line Encyclopedia of Integer Sequences).

Soluciones

2015 como raíz cuadrada de la suma de tres cubos

Todos los años, en las proximidades del final de año suelen aparecer cuestiones con propiedades del número del nuevo año. Una sobre el 2015 es la publicada el martes en la entrada 2015 como raíz de la suma de tres cubos del blog Números y algo más en la que se pide calcular tres números tales que 2015 sea igual a la raíz cuadrada de la suma de dichos tres números.

A partir de dicha entrada, se propone el siguiente problema: Definir la sucesión

cuyos elementos son los números que se pueden escribir como raíces cuadradas de sumas de tres cubos. Por ejemplo,

El 6 está en la sucesión porque 1³+2³+3³ = 36 y la raíz cuadrada de36 es 6 y el 9 está porque 3³+3³+3³ = 81 y la raíz cuadrada de 81 es 9. Algunos números tienen varias descomposiones como raíz cuadrada de suma de tres cubos; por ejemplo, el 71 se puede escribir como la raíz cuadrada de la suma de los cubos de 6, 9 y 16 y también como la de 4, 4, y 17.

A partir de la sucesión se plantean las siguientes cuestiones:

  • ¿Qué lugar ocupa el 2015 en la sucesión?
  • ¿Cuál será el próximo año que se podrá escribir como la raíz cuadrada de suma de tres cubos?
  • ¿Cuáles son las descomposiciones de 2015 como raíz cuadrada de suma de tres cubos?
  • ¿Cuáles son los años hasta el 2015 que se pueden escribir como raíz cuadrada de suma de tres cubos de más formas distintas?

Soluciones

Elementos adicionales

Enunciado

Soluciones

Representaciones de matrices

Enunciado

Soluciones

Números que sumados a su siguiente primo dan primos

Introducción

La Enciclopedia electrónica de sucesiones de enteros (OEIS por sus siglas en inglés, de On-Line Encyclopedia of Integer Sequences) es una base de datos que registra sucesiones de números enteros. Está disponible libremente en Internet, en la dirección http://oeis.org.

La semana pasada Antonio Roldán añadió una nueva sucesión a la OEIS, la A249624 que sirve de base para el problema de hoy.

Enunciado

Soluciones

Último dígito no nulo del factorial

Enunciado

Soluciones

Laberinto numérico

Enunciado

Soluciones

Código Morse

El código Morse es un sistema de representación de letras y números mediante señales emitidas de forma intermitente.

A los signos (letras mayúsculas o dígitos) se le asigna un código como se muestra a continuación

El código Morse de las palabras se obtiene a partir del de sus caracteres insertando un espacio entre cada uno. Por ejemplo, el código de "todo" es "- --- -.. ---"

El código Morse de las frases se obtiene a partir del de sus palabras insertando dos espacios entre cada uno. Por ejemplo, el código de "todo o nada" es "- --- -.. --- --- -. .- -.. .-"

Enunciado

Ayuda: Se puede usar la función splitOn de la librería Data.List.Split.

Soluciones

Elemento más cercano que cumple una propiedad

Soluciones

Referencia

El ejercicio está basado en el problema del 12 de mayo de 1HaskellADay.

Empiezan con mayúscula

Enunciado

Soluciones

Límite de sucesiones

Enunciado

Soluciones