Ordenación por frecuencia

Definir la función

tal que (ordPorFrecuencia xs) es la lista obtenidas ordenando los elementos de xs por su frecuencia, de los que aparecen menos a los que aparecen más. Por ejemplo,

Soluciones

Sumas digitales de primos consecutivos

Definir la función

tal que (primosConsecutivosConSumasDigitalesPrimas k) es la sucesión de listas de k primos consecutivos tales que las sumas ordenadas de sus dígitos también son primos consecutivos. Por ejemplo,

Soluciones

Referencias

Basado en el artículo DigitSums of some consecutive primes del blog Fun With Num3ers.

Primos que contienen al 2016

Definir la sucesión

tal que sus elementos son los números primos que contienen al 2016. Por ejemplo,

Soluciones

Referencias

Basado en el artículo Prime numbers containing 2016 del blog Fun With Num3ers.

Puntos visibles en la cuadrícula de un plano

La cuadrícula entera de lado n, Cₙ, es el conjunto de los puntos (x,y) donde x e y son números enteros tales que 1 ≤ x, y ≤ n.

Un punto (x,y) de Cₙ es visible desde el origen si el máximo común divisor de x e y es 1. Por ejemplo, el punto (4,6) no es visible porque está ocultado por el (2,3); en cambio, el (2,3) sí es visible.

El conjunto de los puntos visibles en la cuadrícula entera de lado 6 son (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,3), (2,5), (3,1), (3,2), (3,4), (3,5), (4,1), (4,3), (4,5), (5,1), (5,2), (5,3), (5,4), (5,6), (6,1) y (6,5).

Definir la función

tal que (nVisibles n) es el número de los puntos visibles en la cuadrícula de lado n.Por ejemplo,

Soluciones

Referencias

Cambios de signo

En una lista xs se produce un cambio de signo por cada elemento x de la lista junto el primero de los elementos de xs con signo opuesto al de x. Por ejemplo,en la lista [6,5,-4,0,-2,-7,0,-8,-1,4] hay 2 cambios de signo (entre (5,-4) y (-1,4)) y en la lista [6,5,-4,0, 2,-7,0,-8,-1,4] hay 4 cambios de signo (entre (5,-4), (-4,2), (2,-7) y(-1,4)).

Definir la función

tal que (nCambios xs) es el número de cambios de signos de la lista xs. Por ejemplo,

Soluciones

Parte libre de cuadrados y parte cuadrada de un número

La parte libre de cuadrados de un número n es el producto de todos sus divisores primos con exponente impar en la factorización prima de n. Por ejemplo, la parte libre de cuadrados de 360 es 10 ya que 360 = 2³3²5 y 2.5 = 10; además, 360 = 10.6²

La parte cuadrada de un número n es el mayor número cuadrado que divide a n. Por ejemplo, la parte cuadrada de 360 es 6.

Definir las funciones

tales que

  • (parteLibre x) es la parte libre de x. Por ejemplo,

  • (parteCuadrada x) es la parte cuadrada de x. Por ejemplo,

Soluciones

Referencias

Puntos en una región

Definir la función

tal que (puntos n) es la lista de los puntos (x,y) con coordenadas enteras de
la cuadrícula [1..n]x[1..n] (es decir, 1 ≤ x,y ≤ n) tales que |x²-xy-y²| = 1. Por ejemplo,

Soluciones

2016 es un número práctico

Un entero positivo n es un número práctico si todos los enteros positivos menores que él se pueden expresar como suma de distintos divisores de n. Por ejemplo, el 12 es un número práctico, ya que todos los enteros positivos menores que 12 se pueden expresar como suma de divisores de 12 (1, 2, 3, 4 y 6) sin usar ningún divisor más de una vez en cada suma:

En cambio, 14 no es un número práctico ya que 6 no se puede escribir como suma, con sumandos distintos, de divisores de 14.

Definir la función

tal que (esPractico n) se verifica si n es un número práctico. Por ejemplo,

Soluciones

Referencias

Basado en el artículo de Gaussianos Feliz Navidad y Feliz Año (número práctico) 2016.

Otras referencias

Suma con redondeos

Definir las funciones

tales que

  • (sumaRedondeos n) es la sucesión cuyo k-ésimo término es

Por ejemplo,

  • (limiteSumaRedondeos n) es la suma de la serie

Por ejemplo,

Soluciones

Elementos óptimos

Definir la función

tal que (optimos r f xs) es la lista de los elementos de xs donde la función f alcanza sus valores óptimos respecto de la relación r. Por ejemplo,

Soluciones

Elementos maximales

Definir la función

tal que (maximales r xs) es la lista de los elementos de xs para los que no hay ningún otro elemento de xs mayor según la relación r. Por ejemplo,

Soluciones

Operación sobre todos los pares

Definir la función

tal que (todosPares f xs ys) es el resultado de aplicar la operación f a todos los pares de xs e ys. Por ejemplo,

Soluciones

Árbol de Navidad

Definir el procedimiento

tal que (arbol n) dibuja el árbol de Navidad con una copa de altura n y un tronco de altura la mitad de n. Por ejemplo,

Soluciones

Producto infinito

Definir la función

tal que (productoInfinito xs) es la lista infinita que en la posición N tiene el producto de los N primeros elementos de la lista infinita xs. Por ejemplo,

Nota: Este ejercicio es parte del examen del grupo 3 del 2 de diciembre.

Soluciones

Listas hermanadas

Una lista hermanada es una lista de números estrictamente positivos en la que cada elemento tiene algún factor primo en común con el siguiente, en caso de que exista, o alguno de los dos es un 1. Por ejemplo,

  • [2,6,3,9,1,5] es una lista hermanada pues 2 y 6 tienen un factor en común (2); 6 y 3 tienen un factor en común (3); 3 y 9 tienen un factor en común (3); de 9 y 1 uno es el número 1; y de 1 y 5 uno es el número 1.
  • [2,3,5] no es una lista hermanada pues 2 y 3 no tienen ningún factor primo en común.

Definir la función

tal que (hermanada xs) se verifica si la lista xs es hermanada según la definición anterior. Por ejemplo,

Nota: Este ejercicio es parte del examen del grupo 3 del 2 de diciembre.

Soluciones

Suma de elementos en posiciones dadas

Definir la función

tal que (sumaEnPosicion xs ys) es la suma de todos los elementos de xs cuyas posiciones se indican en ys. Por ejemplo,

Soluciones

Factorizable respecto de una lista

Definir la función

tal que (factorizable x ys) se verifica si x se puede escribir como producto de potencias de elementos de ys. Por ejemplo,

Soluciones

Año cúbico

El año 2016 será un año cúbico porque se puede escribir como la suma de los cubos de 7 números consecutivos; en efecto,

Definir la función

tal que (esCubico x) se verifica si x se puede escribir como la suma de los cubos de 7 números consecutivos. Por ejemplo,

Soluciones

Los números de Smith

Un número de Smith es un número natural compuesto que cumple que la suma de sus dígitos es igual a la suma de los dígitos de todos sus factores primos (si tenemos algún factor primo repetido lo sumamos tantas veces como aparezca). Por ejemplo, el 22 es un número de Smith ya que

y el 4937775 también lo es ya que

Definir las funciones

tales que

  • (esSmith x) se verifica si x es un número de Smith. Por ejemplo,

  • smith es la lista cuyos elementos son los números de Smith. Por ejemplo,

Soluciones

Los números de Armstrong

Un número de n dígitos es un número de Armstrong si es igual a la suma de las n-ésimas potencias de sus dígitos. Por ejemplo, 371, 8208 y 4210818 son números de Armstrong ya que

Definir las funciones

tales que

  • (esArmstrong x) se verifica si x es un número de Armstrong. Por ejemplo,

  • armstrong es la lista cuyos elementos son los números de Armstrong. Por ejemplo,

Comprobar con QuickCheck que los números mayores que
115132219018763992565095597973971522401 no son números de Armstrong.

Soluciones

Repeticiones según la posición

Definir la función

tal que (transformada xs) es la lista obtenida repitiendo cada elemento tantas veces como indica su posición en la lista. Por ejemplo,

Comprobar con QuickCheck si la transformada de una lista de n números enteros, con n ≥ 2, tiene menos de n³ elementos.

Soluciones

Ganadores de las elecciones

Los resultados de las votaciones a delegado en un grupo de clase se recogen mediante listas de asociación. Por ejemplo,

Definir la función

tal que (ganadores xs) es la lista de los estudiantes con mayor número de votos en xs. Por ejemplo,

Soluciones

Listas de igual longitud

Definir la función

tal que (mismaLongitud xss) se verifica si todas las listas de la lista de listas xss tienen la misma longitud. Por ejemplo,

Soluciones

Ternas con suma acotada

Definir la función

tal que (ternasAcotadas xs n) es el conjunto de ternas de números naturales de xs cuya suma es menor que n. Por ejemplo,

Soluciones

Productos de N números consecutivos

La semana pasada se planteó en Twitter el siguiente problema

Se observa que

¿Existen ejemplos de otros productos de cuatro enteros consecutivos iguales a un producto de tres enteros consecutivos?

Definir la función

tal que (esProductoDeNconsecutivos n x) es (Just m) si x es el producto de n enteros consecutivos a partir de m y es Nothing si x no es el producto de n enteros consecutivos. Por ejemplo,

Para ejemplos mayores,

Usando la función esProductoDeNconsecutivos resolver el problema.

Soluciones

Números muy pares

Un entero positivo x es muy par si tanto x como x² sólo contienen cifras pares. Por ejemplo, 200 es muy par porque todas las cifras de 200 y 200² = 40000 son pares; pero 26 no lo es porque 26² = 676 tiene cifras impares.

Definir la función

tal que (siguienteMuyPar x) es menor número mayor que x que es muy par. Por ejemplo,

Soluciones

Listas decrecientes

Definir la función

tal que (listasDecrecientesDesde n) es la lista de las sucesiones estrictamente decrecientes cuyo primer elemento es n. Por ejemplo,

Soluciones

Primos gemelos próximos a múltiplos de 6

Un par de números primos (p,q) es un par de números primos gemelos si su distancia de 2; es decir, si q = p+2. Por ejemplo, (17,19) es una par de números primos gemelos.

Se dice que un par de números (x,y) está próximo a un múltiplo de 6 si es de la forma (6*n-1,6*n+1). Por ejemplo, (17,19) está cerca de un múltiplo de 6 porque (17,19) = (6*3-1,6*3+1).

Definir las funciones

tales que

  • (primosGemelos n) es la lista de los primos gemelos menores que n. Por ejemplo,

  • (primosGemelosNoProximosAmultiplosDe6 n) es la lista de los primos gemelos menores que n que no están próximos a un múltiplo de 6. Por ejemplo,

Soluciones

Capicúas productos de dos números de dos dígitos

El número 9009 es capicúa y es producto de dos números de dos dígitos, pues 9009 = 91*99.

Definir la lista

cuyos elementos son los números capicúas que son producto de 2 números de dos dígitos. Por ejemplo,

Soluciones

Números muy divisibles por 3

Se dice que un número n es muy divisible por 3 si es divisible por 3 y sigue siendo divisible por 3 si vamos quitando dígitos por la derecha. Por ejemplo, 96060 es muy divisible por 3 porque 96060, 9606, 960, 96 y 9 son todos divisibles por 3.

Definir las funciones

tales que

  • (muyDivPor3 n) se verifica si n es muy divisible por 3. Por ejemplo,

  • (numeroMuyDivPor3CifrasC k) es la cantidad de números de k cifras muy divisibles por 3. Por ejemplo,

Soluciones