Menu Close

Etiqueta: tail

Representación de Zeckendorf

Los primeros números de Fibonacci son

   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

   100 = 89 + 8 + 3

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

   100 = 89 +  8 + 2 + 1
   100 = 55 + 34 + 8 + 3

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

   zeckendorf :: Integer -> [Integer]

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

   zeckendorf 100 == [89,8,3]
   zeckendorf 200 == [144,55,1]
   zeckendorf 300 == [233,55,8,3,1]
   length (zeckendorf (10^50000)) == 66097

Soluciones

module Representacion_de_Zeckendorf where
 
import Data.List (subsequences)
import Test.QuickCheck
 
-- 1ª solución
-- ===========
 
zeckendorf1 :: Integer -> [Integer]
zeckendorf1 = head . zeckendorf1Aux
 
zeckendorf1Aux :: Integer -> [[Integer]]
zeckendorf1Aux n =
  [xs | xs <- subsequences (reverse (takeWhile (<= n) (tail fibs))),
        sum xs == n,
        sinFibonacciConsecutivos xs]
 
-- fibs es la la sucesión de los números de Fibonacci. Por ejemplo,
--    take 14 fibs  == [1,1,2,3,5,8,13,21,34,55,89,144,233,377]
fibs :: [Integer]
fibs = 1 : scanl (+) 1 fibs
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
 
-- (sinFibonacciConsecutivos xs) se verifica si en la sucesión
-- decreciente de número de Fibonacci xs no hay dos consecutivos. Por
-- ejemplo, 
--    sinFibonacciConsecutivos [89, 8, 3]      ==  True
--    sinFibonacciConsecutivos [55, 34, 8, 3]  ==  False
sinFibonacciConsecutivos :: [Integer] -> Bool
sinFibonacciConsecutivos xs =
  and [x /= siguienteFibonacci y | (x,y) <- zip xs (tail xs)]
 
-- (siguienteFibonacci n) es el menor número de Fibonacci mayor que
-- n. Por ejemplo, 
--    siguienteFibonacci 34  ==  55
siguienteFibonacci :: Integer -> Integer
siguienteFibonacci n =
  head (dropWhile (<= n) fibs)
 
-- 2ª solución
-- ===========
 
zeckendorf2 :: Integer -> [Integer]
zeckendorf2 = head . zeckendorf2Aux
 
zeckendorf2Aux :: Integer -> [[Integer]]
zeckendorf2Aux n = map reverse (aux n (tail fibs))
  where aux 0 _ = [[]]
        aux m (x:y:zs)
            | x <= m     = [x:xs | xs <- aux (m-x) zs] ++ aux m (y:zs)
            | otherwise  = []
 
-- 3ª solución
-- ===========
 
zeckendorf3 :: Integer -> [Integer]
zeckendorf3 0 = []
zeckendorf3 n = x : zeckendorf3 (n - x)
  where x = last (takeWhile (<= n) fibs)
 
-- 4ª solución
-- ===========
 
zeckendorf4 :: Integer -> [Integer]
zeckendorf4 n = aux n (reverse (takeWhile (<= n) fibs))
  where aux 0 _      = []
        aux m (x:xs) = x : aux (m-x) (dropWhile (>m-x) xs)
 
-- Comprobación de equivalencia
-- ============================
 
-- La propiedad es
prop_zeckendorf :: Positive Integer -> Bool
prop_zeckendorf (Positive n) =
  all (== zeckendorf1 n)
      [zeckendorf2 n,
       zeckendorf3 n,
       zeckendorf4 n]
 
-- La comprobación es
--    λ> quickCheck prop_zeckendorf
--    +++ OK, passed 100 tests.
 
-- Comparación de eficiencia
-- =========================
 
-- La comparación es
--    λ> zeckendorf1 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (1.49 secs, 2,380,707,744 bytes)
--    λ> zeckendorf2 (7*10^4)
--    [46368,17711,4181,1597,89,34,13,5,2]
--    (0.07 secs, 21,532,008 bytes)
--
--    λ> zeckendorf2 (10^6)
--    [832040,121393,46368,144,55]
--    (1.40 secs, 762,413,432 bytes)
--    λ> zeckendorf3 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 542,488 bytes)
--    λ> zeckendorf4 (10^6)
--    [832040,121393,46368,144,55]
--    (0.01 secs, 536,424 bytes)
--
--    λ> length (zeckendorf3 (10^3000))
--    3947
--    (3.02 secs, 1,611,966,408 bytes)
--    λ> length (zeckendorf4 (10^2000))
--    2611
--    (0.02 secs, 10,434,336 bytes)
--
--    λ> length (zeckendorf4 (10^50000))
--    66097
--    (2.84 secs, 3,976,483,760 bytes)

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Caminos reducidos

Un camino es una sucesión de pasos en una de las cuatros direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a continuación en la opuesta es un esfuerzo que se puede reducir, Por ejemplo, el camino [Norte,Sur,Este,Sur] se puede reducir a [Este,Sur].

Un camino se dice que es reducido si no tiene dos pasos consecutivos en direcciones opuesta. Por ejemplo, [Este,Sur] es reducido y [Norte,Sur,Este,Sur] no lo es.

En Haskell, las direcciones y los caminos se pueden definir por

   data Direccion = N | S | E | O deriving (Show, Eq)
   type Camino = [Direccion]

Definir la función

   reducido :: Camino -> Camino

tal que (reducido ds) es el camino reducido equivalente al camino ds. Por ejemplo,

   reducido []                              ==  []
   reducido [N]                             ==  [N]
   reducido [N,O]                           ==  [N,O]
   reducido [N,O,E]                         ==  [N]
   reducido [N,O,E,S]                       ==  [] 
   reducido [N,O,S,E]                       ==  [N,O,S,E]
   reducido [S,S,S,N,N,N]                   ==  []
   reducido [N,S,S,E,O,N]                   ==  []
   reducido [N,S,S,E,O,N,O]                 ==  [O]
   reducido (take (10^7) (cycle [N,E,O,S])) ==  []

Nótese que en el penúltimo ejemplo las reducciones son

       [N,S,S,E,O,N,O]  
   --> [S,E,O,N,O]  
   --> [S,N,O]  
   --> [O]

Soluciones

data Direccion = N | S | E | O deriving (Show, Eq)
 
type Camino = [Direccion]
 
-- 1ª solución (por recursión):
reducido1 :: Camino -> Camino
reducido1 [] = []
reducido1 (d:ds) | null ds'                = [d]
                 | d == opuesta (head ds') = tail ds'
                 | otherwise               = d:ds'
    where ds' = reducido1 ds
 
opuesta :: Direccion -> Direccion
opuesta N = S
opuesta S = N
opuesta E = O
opuesta O = E
 
-- 2ª solución (por plegado)
reducido2 :: Camino -> Camino
reducido2 = foldr aux []
    where aux N (S:xs) = xs
          aux S (N:xs) = xs
          aux E (O:xs) = xs
          aux O (E:xs) = xs
          aux x xs     = x:xs
 
-- 3ª solución 
reducido3 :: Camino -> Camino
reducido3 []       = []
reducido3 (N:S:ds) = reducido3 ds
reducido3 (S:N:ds) = reducido3 ds
reducido3 (E:O:ds) = reducido3 ds
reducido3 (O:E:ds) = reducido3 ds
reducido3 (d:ds) | null ds'                = [d]
                 | d == opuesta (head ds') = tail ds'
                 | otherwise               = d:ds'
    where ds' = reducido3 ds
 
-- 4ª solución
reducido4 :: Camino -> Camino
reducido4 ds = reverse (aux ([],ds)) where 
    aux (N:xs, S:ys) = aux (xs,ys)
    aux (S:xs, N:ys) = aux (xs,ys)
    aux (E:xs, O:ys) = aux (xs,ys)
    aux (O:xs, E:ys) = aux (xs,ys)
    aux (  xs, y:ys) = aux (y:xs,ys)
    aux (  xs,   []) = xs
 
-- Comparación de eficiencia
--    ghci> reducido1 (take (10^6) (cycle [N,E,O,S]))
--    []
--    (3.87 secs, 460160736 bytes)
--    ghci> reducido2 (take (10^6) (cycle [N,E,O,S]))
--    []
--    (1.16 secs, 216582880 bytes)
--    ghci> reducido3 (take (10^6) (cycle [N,E,O,S]))
--    []
--    (0.58 secs, 98561872 bytes)
--    ghci> reducido4 (take (10^6) (cycle [N,E,O,S]))
--    []
--    (0.64 secs, 176154640 bytes)
--    
--    ghci> reducido3 (take (10^7) (cycle [N,E,O,S]))
--    []
--    (5.43 secs, 962694784 bytes)
--    ghci> reducido4 (take (10^7) (cycle [N,E,O,S]))
--    []
--    (9.29 secs, 1722601528 bytes)
-- 
--    ghci> length $ reducido3 (take 2000000 $ cycle [N,O,N,S,E,N,S,O,S,S])
--    400002
--    (4.52 secs, 547004960 bytes)
--    ghci> length $ reducido4 (take 2000000 $ cycle [N,O,N,S,E,N,S,O,S,S])
--    400002
--    
--    ghci> let n=10^6 in reducido1 (replicate n N ++ replicate n S)
--    []
--    (7.35 secs, 537797096 bytes)
--    ghci> let n=10^6 in reducido2 (replicate n N ++ replicate n S)
--    []
--    (2.30 secs, 244553404 bytes)
--    ghci> let n=10^6 in reducido3 (replicate n N ++ replicate n S)
--    []
--    (8.08 secs, 545043608 bytes)
--    ghci> let n=10^6 in reducido4 (replicate n N ++ replicate n S)
--    []
--    (1.96 secs, 205552240 bytes)

Números de Perrin

Los números de Perrin se definen por la elación de recurrencia

   P(n) = P(n - 2) + P(n - 3) si n > 2,

con los valores iniciales

   P(0) = 3, P(1) = 0 y P(2) = 2.

Definir la sucesión

   sucPerrin :: [Integer]

cuyos elementos son los números de Perrin. Por ejemplo,

   λ> take 15 sucPerrin
   [3,0,2,3,2,5,5,7,10,12,17,22,29,39,51]
   λ> length (show (sucPerrin !! (2*10^5)))
   24425

Comprobar con QuickCheck si se verifica la siguiente propiedad: para todo entero n > 1, el n-ésimo término de la sucesión de Perrin es divisible por n si y sólo si n es primo.

Soluciones

import Data.List (genericIndex, unfoldr)
import Data.Numbers.Primes (isPrime)
import Test.QuickCheck
 
-- 1ª solución
sucPerrin1 :: [Integer]
sucPerrin1 = 3 : 0 : 2 : zipWith (+) sucPerrin1 (tail sucPerrin1)
 
-- 2ª solución
sucPerrin2 :: [Integer]
sucPerrin2 = [x | (x,_,_) <- iterate op (3,0,2)]
  where op (a,b,c) = (b,c,a+b)
 
-- 3ª solución
sucPerrin3 :: [Integer]
sucPerrin3 =
  unfoldr (\(a, (b,c)) -> Just (a, (b,(c,a+b)))) (3,(0,2))
 
-- 4ª solución
sucPerrin4 :: [Integer]
sucPerrin4 = [vectorPerrin n ! n | n <- [0..]]
 
vectorPerrin :: Integer -> Array Integer Integer
vectorPerrin n = v where
  v = array (0,n) [(i,f i) | i <- [0..n]]
  f 0 = 3
  f 1 = 0
  f 2 = 2
  f i = v ! (i-2) + v ! (i-3)
 
-- Comparación de eficiencia
--    λ> length (show (sucPerrin1 !! (3*10^5)))
--    36638
--    (1.62 secs, 2,366,238,984 bytes)
--    λ> length (show (sucPerrin2 !! (3*10^5)))
--    36638
--    (1.40 secs, 2,428,701,384 bytes)
--    λ> length (show (sucPerrin3 !! (3*10^5)))
--    36638
--    (1.14 secs, 2,409,504,864 bytes)
--    λ> length (show (sucPerrin4 !! (3*10^5)))
--    36638
--    (1.78 secs, 2,585,400,776 bytes)
 
 
-- Usaremos la 3ª
sucPerrin :: [Integer]
sucPerrin = sucPerrin3
 
-- La propiedad es  
conjeturaPerrin :: Integer -> Property
conjeturaPerrin n =
  n > 1 ==>
  (perrin n `mod` n == 0) == isPrime n
 
-- (perrin n) es el n-ésimo término de la sucesión de Perrin. Por
-- ejemplo,
--    perrin 4  ==  2
--    perrin 5  ==  5
--    perrin 6  ==  5
perrin :: Integer -> Integer
perrin n = sucPerrin `genericIndex` n
 
-- La comprobación es
--    λ> quickCheck conjeturaPerrin
--    +++ OK, passed 100 tests.
 
-- Nota: Aunque QuickCheck no haya encontrado contraejemplos, la
-- propiedad no es cierta. Sólo lo es una de las implicaciones: si n es
-- primo, entonces el  n-ésimo término de la sucesión de Perrin es
-- divisible por n. La otra es falsa y los primeros contraejemplos son
--    271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291

Sucesión fractal

La sucesión fractal

   0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, 0, 8, 4, 9, 2, 
   10, 5, 11, 1, 12, 6, 13, 3, 14, 7, 15, ...

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales
     0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
  • los términos impares forman la misma sucesión original
     0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, ...

Definir las funciones

   sucFractal     :: [Integer]
   sumaSucFractal :: Integer -> Integer

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,
     take 20 sucFractal   == [0,0,1,0,2,1,3,0,4,2,5,1,6,3,7,0,8,4,9,2]
     sucFractal !! 30     == 15
     sucFractal !! (10^7) == 5000000
  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,
     sumaSucFractal 10      == 13
     sumaSucFractal (10^5)  == 1666617368
     sumaSucFractal (10^10) == 16666666661668691669
     sumaSucFractal (10^15) == 166666666666666166673722792954
     sumaSucFractal (10^20) == 1666666666666666666616666684103392376198
     length (show (sumaSucFractal (10^15000))) == 30000
     sumaSucFractal (10^15000) `mod` (10^9)    == 455972157

Soluciones

 
-- 1ª definición de sucFractal
-- ===========================
 
sucFractal1 :: [Integer]
sucFractal1 = 
  map termino [0..]
 
-- (termino n) es el término n de la secuencia anterior. Por ejemplo,
--   termino 0            ==  0
--   termino 1            ==  0
--   map termino [0..10]  ==  [0,0,1,0,2,1,3,0,4,2,5]
termino :: Integer -> Integer
termino 0 = 0
termino n 
  | even n    = n `div` 2
  | otherwise = termino (n `div` 2)
 
-- 2ª definición de sucFractal
-- ===========================
 
sucFractal2 :: [Integer]
sucFractal2 =
  0 : 0 : mezcla [1..] (tail sucFractal2)
 
-- (mezcla xs ys) es la lista obtenida intercalando las listas infinitas
-- xs e ys. Por ejemplo,
--    take 10 (mezcla [0,2..] [0,-2..])  ==  [0,0,2,-2,4,-4,6,-6,8,-8]
mezcla :: [Integer] -> [Integer] -> [Integer]
mezcla (x:xs) (y:ys) =
  x : y : mezcla xs ys
 
-- Comparación de eficiencia de definiciones de sucFractal
-- =======================================================
 
--    λ> sum (take (10^6) sucFractal1)
--    166666169612
--    (5.56 secs, 842,863,264 bytes)
--    λ> sum (take (10^6) sucFractal2)
--    166666169612
--    (1.81 secs, 306,262,616 bytes)
 
-- En lo que sigue usaremos la 2ª definición
sucFractal :: [Integer]
sucFractal = sucFractal2
 
-- 1ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal1 :: Integer -> Integer
sumaSucFractal1 n =
  sum (map termino [0..n-1])
 
-- 2ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal2 :: Integer -> Integer
sumaSucFractal2 n =
  sum (take (fromIntegral n) sucFractal)
 
-- 3ª definición de sumaSucFractal
-- ===============================
 
sumaSucFractal3 :: Integer -> Integer
sumaSucFractal3 0 = 0
sumaSucFractal3 1 = 0
sumaSucFractal3 n
  | even n    = sumaN (n `div` 2) + sumaSucFractal3 (n `div` 2)
  | otherwise = sumaN ((n+1) `div` 2) + sumaSucFractal3 (n `div` 2)
  where sumaN n = (n*(n-1)) `div` 2
 
-- Comparación de eficiencia de definiciones de sumaSucFractal
-- ===========================================================
 
--    λ> sumaSucFractal1 (10^6)
--    166666169612
--    (5.25 secs, 810,622,504 bytes)
--    λ> sumaSucFractal2 (10^6)
--    166666169612
--    (1.72 secs, 286,444,048 bytes)
--    λ> sumaSucFractal3 (10^6)
--    166666169612
--    (0.01 secs, 0 bytes)
--    
--    λ> sumaSucFractal2 (10^7)
--    16666661685034
--    (17.49 secs, 3,021,580,920 bytes)
--    λ> sumaSucFractal3 (10^7)
--    16666661685034
--    (0.01 secs, 0 bytes)

Huecos de Aquiles

Un número de Aquiles es un número natural n que es potente (es decir, si p es un divisor primo de n, entonces p² también lo es) y no es una potencia perfecta (es decir, no existen números naturales m y k tales que n es igual a m^k). Por ejemplo,

  • 108 es un número de Aquiles proque es un número potente (ya que su factorización es 2^2 · 3^3, sus divisores primos son 2 and 3 y sus cuadrados (2^2 = 4 y 3^2 = 9) son divisores de 108. Además, 108 no es una potencia perfecta.
  • 360 no es un número de Aquiles ya que 5 es un divisor primo de 360, pero 5^2 = 15 no lo es.
  • 784 no es un número de Aquiles porque, aunque es potente, es una potencia perfecta ya que 784 = 28^2.

Los primeros números de Aquiles son

   72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, ...

Definir las funciones

   esAquiles              :: Integer -> Bool
   huecosDeAquiles        :: [Integer]
   graficaHuecosDeAquiles :: Int -> IO ()

tales que

  • (esAquiles x) se verifica si x es un número de Aquiles. Por ejemplo,
     esAquiles 108         ==  True
     esAquiles 360         ==  False
     esAquiles 784         ==  False
     esAquiles 5425069447  ==  True
     esAquiles 5425069448  ==  True
  • huecosDeAquiles es la sucesión de la diferencias entre los números de Aquiles consecutivos. Por ejemplo,
     λ> take 15 huecosDeAquiles
     [36,92,88,104,40,68,148,27,125,64,104,4,153,27,171]
  • (graficaHuecosDeAquiles n) dibuja la gráfica de los n primeros huecos de Aquiles. Por ejemplo, (graficaHuecosDeAquiles 160) dibuja

Soluciones

import Data.List (group)
import Data.Numbers.Primes (primeFactors)
import Graphics.Gnuplot.Simple
 
-- Definición de esAquiles
-- =======================
 
esAquiles :: Integer -> Bool
esAquiles x = esPotente x && noEsPotenciaPerfecta x
 
-- (esPotente x) se verifica si x es potente. Por ejemplo,
--    esPotente 108  ==  True
--    esPotente 360  ==  False
--    esPotente 784  ==  True
esPotente :: Integer -> Bool
esPotente x = all (>1) (exponentes x)
 
-- (exponentes x) es la lista de los exponentes en la factorización de
-- x. Por ejemplo,
--    exponentes 108  ==  [2,3]
--    exponentes 360  ==  [3,2,1]
--    exponentes 784  ==  [4,2]
exponentes :: Integer -> [Int]
exponentes x = map length (group (primeFactors x))
 
-- (noEsPotenciaPerfecta x) se verifica si x no es una potencia
-- perfecta. Por ejemplo,
--    noEsPotenciaPerfecta 108  ==  True
--    noEsPotenciaPerfecta 360  ==  True
--    noEsPotenciaPerfecta 784  ==  False
noEsPotenciaPerfecta :: Integer -> Bool
noEsPotenciaPerfecta x = foldl1 gcd (exponentes x) == 1 
 
-- Definición de huecosDeAquiles
-- =============================
 
huecosDeAquiles :: [Integer]
huecosDeAquiles = zipWith (-) (tail aquiles) aquiles
 
-- aquiles es la sucesión de los números de Aquiles. Por ejemplo, 
--    λ> take 15 aquiles
--    [72,108,200,288,392,432,500,648,675,800,864,968,972,1125,1152]
aquiles :: [Integer]
aquiles = filter esAquiles [2..]
 
-- Definición de graficaHuecosDeAquiles
-- ====================================
 
graficaHuecosDeAquiles :: Int -> IO ()
graficaHuecosDeAquiles n =
  plotList [ Key Nothing
           , PNG "Huecos_de_Aquiles.png"
           ]
           (take n huecosDeAquiles)

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>