Sucesión de sumas de dos números abundantes

Un número n es abundante si la suma de los divisores propios de n es mayor que n. El primer número abundante es el 12 (cuyos divisores propios son 1, 2, 3, 4 y 6 cuya suma es 16). Por tanto, el menor número que es la suma de dos números abundantes es el 24.

Definir la sucesión

cuyos elementos son los números que se pueden escribir como suma de dos números abundantes. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Mínimo producto escalar

El producto escalar de los vectores [a1,a2,…,an] y [b1,b2,…, bn] es

Definir la función

tal que (menorProductoEscalar xs ys) es el mínimo de los productos escalares de las permutaciones de xs y de las permutaciones de ys. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

Representación de Zeckendorf

Los primeros números de Fibonacci son

tales que los dos primeros son iguales a 1 y los siguientes se obtienen sumando los dos anteriores.

El teorema de Zeckendorf establece que todo entero positivo n se puede representar, de manera única, como la suma de números de Fibonacci no consecutivos decrecientes. Dicha suma se llama la representación de Zeckendorf de n. Por ejemplo, la representación de Zeckendorf de 100 es

Hay otras formas de representar 100 como sumas de números de Fibonacci; por ejemplo,

pero no son representaciones de Zeckendorf porque 1 y 2 son números de Fibonacci consecutivos, al igual que 34 y 55.

Definir la función

tal que (zeckendorf n) es la representación de Zeckendorf de n. Por ejemplo,

Soluciones

El código se encuentra en GitHub.

La elaboración de las soluciones se describe en el siguiente vídeo

Código de las alergias

Para la determinación de las alergia se utiliza los siguientes códigos para los alérgenos:

Así, si Juan es alérgico a los cacahuetes y al chocolate, su puntuación es 34 (es decir, 2+32).

Los alérgenos se representan mediante el siguiente tipo de dato

Definir la función

tal que (alergias n) es la lista de alergias correspondiente a una puntuación n. Por ejemplo,

Soluciones

[schedule expon=’2022-04-18′ expat=»06:00″]

  • Las soluciones se pueden escribir en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

[schedule on=’2022-04-18′ at=»06:00″]

El código se encuentra en [GitHub](https://github.com/jaalonso/Exercitium/blob/main/src/Alergias.hs).

La elaboración de las soluciones se describe en el siguiente vídeo

Nuevas soluciones

  • En los comentarios se pueden escribir nuevas soluciones.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

[/schedule]

Cadenas de divisores

Una cadena de divisores de un número n es una lista donde cada elemento es un divisor de su siguiente elemento en la lista. Por ejemplo, las cadenas de divisores de 12 son [2,4,12], [2,6,12], [2,12], [3,6,12], [3,12], [4,12], [6,12] y [12].

Definir la función

tal que (cadenasDivisores n) es la lista de las cadenas de divisores de n. Por ejemplo,

Soluciones

Sucesión fractal

La sucesión fractal

está construida de la siguiente forma:

  • los términos pares forman la sucesión de los números naturales

  • los términos impares forman la misma sucesión original

Definir las funciones

tales que

  • sucFractal es la lista de los términos de la sucesión fractal. Por ejemplo,

  • (sumaSucFractal n) es la suma de los n primeros términos de la sucesión fractal. Por ejemplo,

Soluciones

Suma de segmentos iniciales

Los segmentos iniciales de [3,1,2,5] son [3], [3,1], [3,1,2] y [3,1,2,5]. Sus sumas son 3, 4, 6 y 9, respectivamente. La suma de dichas sumas es 24.

Definir la función

tal que (sumaSegmentosIniciales xs) es la suma de las sumas de los segmentos iniciales de xs. Por ejemplo,

Comprobar con QuickCheck que la suma de las sumas de los segmentos iniciales de la lista formada por n veces el número uno es el n-ésimo número triangular; es decir que

es igual a

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Menor no expresable como suma

Definir la función

tal que (menorNoSuma xs) es el menor número que no se puede escribir como suma de un subconjunto de xs, donde se supone que xs es un conjunto de números enteros positivos. Por ejemplo,

Comprobar con QuickCheck que para todo n,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante la variante de Euler de la serie armónica

En el artículo El desarrollo más bello de Pi como suma infinita, Miguel Ángel Morales comenta el desarrollo de pi publicado por Leonhard Euler en su libro «Introductio in Analysis Infinitorum» (1748).

El desarrollo es el siguiente
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_1
y se obtiene a partir de la serie armónica
Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_2
modificando sólo el signo de algunos términos según el siguiente criterio:

  • Dejamos un + cuando el denominador de la fracción sea un 2 o un primo de la forma 4m-1.
  • Cambiamos a – si el denominador de la fracción es un primo de la forma 4m+1.
  • Si el número es compuesto ponemos el signo que quede al multiplicar los signos correspondientes a cada factor.

Por ejemplo,

  • la de denominador 3 = 4×1-1 lleva un +,
  • la de denominador 5 = 4×1+1 lleva un -,
  • la de denominador 13 = 4×3+1 lleva un -,
  • la de denominador 6 = 2×3 lleva un + (porque los dos llevan un +),
  • la de denominador 10 = 2×5 lleva un – (porque el 2 lleva un + y el 5 lleva un -) y
  • la de denominador 50 = 5x5x2 lleva un + (un – por el primer 5, otro – por el segundo 5 y un + por el 2).

Definir las funciones

tales que

  • (aproximacionPi n) es la aproximación de pi obtenida sumando los n primeros términos de la serie de Euler. Por ejemplo.

  • (grafica n) dibuja la gráfica de las aproximaciones de pi usando k sumando donde k toma los valores de la lista [100,110..n]. Por ejemplo, al evaluar (grafica 4000) se obtiene
    Calculo_de_pi_mediante_la_variante_de_Euler_de_la_serie_armonica_3.png

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante los métodos de Gregory-Leibniz y de Beeler

La fórmula de Gregory-Leibniz para calcular pi es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_1
y la de Beeler es
Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_2

Definir las funciones

tales que

  • (aproximaPiGL n) es la aproximación de pi con los primeros n términos de la fórmula de Gregory-Leibniz. Por ejemplo,

  • (aproximaPiBeeler n) es la aproximación de pi con los primeros n términos de la fórmula de Beeler. Por ejemplo,

  • (graficas xs) dibuja la gráfica de las k-ésimas aproximaciones de pi, donde k toma los valores de la lista xs, con las fórmulas de Gregory-Leibniz y de Beeler. Por ejemplo, (graficas [1..25]) dibuja
    Calculo_de_pi_mediante_los_metodos_de_Gregory-Leibniz_y_de_Beeler_3
    donde la línea morada corresponde a la aproximación de Gregory-Leibniz y la verde a la de Beeler.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Cálculo de pi mediante el método de Newton

El método de Newton para el cálculo de pi se basa en la relación
Calculo_de_pi_mediante_el_metodo_de_Newton_1
y en el desarrollo del arco seno
Calculo_de_pi_mediante_el_metodo_de_Newton_2
de donde se obtiene la fórmula
Calculo_de_pi_mediante_el_metodo_de_Newton_3

La primeras aproximaciones son

Definir las funciones

tales que

  • (aproximacionPi n) es la n-ésima aproximación de pi con la fórmula de Newton. Por ejemplo,

  • (grafica xs) dibuja la gráfica de las k-ésimas aproximaciones de pi donde k toma los valores de la lista xs. Por ejemplo, (grafica [1..30]) dibuja
    Calculo_de_pi_mediante_el_metodo_de_Newton_4

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«Mi trabajo siempre trató de unir lo verdadero con lo bello; pero cuando tuve que elegir uno u otro, generalmente elegí lo bello.»

Hermann Weyl.

Medias de dígitos de pi

El fichero Digitos_de_pi.txt contiene el número pi con un millón de decimales; es decir,

Definir las funciones

tales que

  • mediasDigitosDePi es la sucesión cuyo n-ésimo elemento es la media de los n primeros dígitos de pi. Por ejemplo,

  • (graficaMediasDigitosDePi n) dibuja la gráfica de los n primeros términos de mediasDigitosDePi. Por ejemplo,
    • (graficaMediasDigitosDePi 20) dibuja
    • (graficaMediasDigitosDePi 200) dibuja
    • (graficaMediasDigitosDePi 2000) dibuja

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

Es el mejor de los buenos
quien sabe que en esta vida
todo es cuestión de medida:
un poco más, algo menos.

Antonio Machado

Pandemia

¡El mundo está en cuarentena! Hay una nueva pandemia que lucha contra la humanidad. Cada continente está aislado de los demás, pero las personas infectadas se han propagado antes de la advertencia.

En este problema se representará el mundo por una cadena como la siguiente

donde 0 representa no infectado, 1 representa infectado y X representa un océano

Las reglas de propagación son:

  • El virus no puede propagarse al otro lado de un océano.
  • Si una persona se infecta, todas las personas de este continente se infectan también.
  • El primer y el último continente no están conectados.

El problema consiste en encontrar el porcentaje de la población humana que se infectó al final. Por ejemplo,

Definir la función

tal que (porcentajeInfectados xs) es el porcentaje final de infectados para el mapa inicial xs. Por ejemplo,

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

«El avance de las matemáticas puede ser visto como un progreso de lo infinito a lo finito.»

Gian-Carlo Rota.

La conjetura de Mertens

Un número entero n es libre de cuadrados si no existe un número primo p tal que p² divide a n; es decir, los factores primos de n son todos distintos.

La función de Möbius μ(n) está definida para todos los enteros positivos como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n no es libre de cuadrados.

Sus primeros valores son 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, …

La función de Mertens M(n) está definida para todos los enteros positivos como la suma de μ(k) para 1 ≤ k ≤ n. Sus primeros valores son 1, 0, -1, -1, -2, -1, -2, -2, …

La conjetura de Mertens afirma que

Para todo entero x mayor que 1, el valor absoluto de la función de Mertens en x es menor que la raíz cuadrada de x.

La conjetura fue planteada por Franz Mertens en 1897. Riele Odlyzko, demostraronen 1985 que la conjetura de Mertens deja de ser cierta más o menos a partir de 10^{10^{64}}, cifra que luego de algunos refinamientos se redujo a 10^{10^{40}}.

Definir las funciones

tales que

  • (mobius n) es el valor de la función de Möbius en n. Por ejemplo,

  • (mertens n) es el valor de la función de Mertens en n. Por ejemplo,

  • (graficaMertens n) dibuja la gráfica de la función de Mertens, la raíz cuadrada y el opuestos de la raíz cuadrada para los n primeros n enteros positivos. Por ejemplo, (graficaMertens 1000) dibuja

Comprobar con QuickCheck la conjetura de Mertens.

Nota: El ejercicio está basado en La conjetura de Merterns y su relación con un número tan raro como extremada y colosalmente grande publicado por @Alvy la semana pasada en Microsiervos.

Soluciones

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang=»haskell»> y otra con </pre>

Pensamiento

«El control de la complejidad es la esencia de la programación informática.»

Brian Kernighan.

Números de Munchausen

Un número de Munchausen es un número entero positivo tal que es igual a la suma de sus dígitos elevados a sí mismo. Por ejemplo, 3435 es un número de Munchausen ya que

Definir la función

tal que (esMunchausen n) se verifica si n es un número de Munchausen. Por ejemplo,

Comprobar con QuickCheck que que los únicos números de Munchausen son 1 y 3435.

Nota 1: No usar la propiedad en la definición.

Nota 2: El ejercicio está basado en el artículo ¿Por qué 3435 es uno de mis números favoritos? de Miguel Ángel Morales en El Aleph.

Soluciones

Pensamiento

Escribiré en tu abanico:
te quiero para olvidarte,
para quererte te olvido.

Antonio Machado

Teorema de Liouville sobre listas CuCu

Una lista CuCu es una lista de números enteros positivos tales que la suma de sus Cubos es igual al Cuadrado de su suma. Por ejemplo, [1, 2, 3, 2, 4, 6] es una lista CuCu ya que

La lista de Liouville correspondiente al número entero positivo n es la lista formada por el número de divisores de cada divisor de n. Por ejemplo, para el número 20 se tiene que sus divisores son

puesto que el número de sus divisores es

  • El 1 tiene 1 divisor (el 1 solamente).
  • El 2 tiene 2 divisores (el 1 y el 2).
  • El 4 tiene 3 divisores (el 1, el 2 y el 4).
  • El 5 tiene 2 divisores (el 1 y el 5).
  • El 10 tiene 4 divisores (el 1, el 2, el 5 y el 10).
  • El 20 tiene 6 divisores (el 1, el 2, el 4, el 5, el 10 y el 20).

la lista de Liouville de 20 es [1, 2, 3, 2, 4, 6] que, como se comentó anteriormente, es una lista CuCu.

El teorema de Lioville afirma que todas las lista de Lioville son CuCu.

Definir las funciones

tales que

  • (esCuCu xs) se verifica si la lista xs es CuCu; es decir, la suma de los cubos de sus elementos es igual al cuadrado de su suma. Por ejemplo,

  • (liouville n) es la lista de Lioville correspondiente al número n. Por ejemplo,

Comprobar con QuickCheck

  • que para todo entero positivo n, (liouville (2^n)) es la lista [1,2,3,…,n+1] y
  • el teorema de Lioville; es decir, para todo entero positivo n, (liouville n) es una lista CuCu.

Nota: Este ejercicio está basado en Cómo generar conjuntos CuCu de Gaussianos.

Soluciones

Pensamiento

¡Oh, tarde viva y quieta
que opuso al panta rhei su nada corre.

Antonio Machado

Derivada aritmética

La derivada aritmética es una función definida sobre los números naturales por analogía con la regla del producto para el cálculo de las derivadas usada en análisis.

Para un número natural n su derivada D(n) se define por

Por ejemplo,

Definir la función

tal que (derivada n) es la derivada aritmética de n. Por ejemplo,

Comprobar con QuickCheck que si x es un número entero positivo y su descomposición en factores primos es

entonces la derivada de x es

Nota: No usar en la definición la propiedad que hay que comprobar.

Soluciones

Referencias

Pensamiento

En ese jardín, Guiomar,
el mutuo jardín que inventan
dos corazones al par,
se funden y complementan
nuestras horas.

Antonio Machado

Suma de números de Fibonacci con índice impar

La sucesión de Fibonacci, F(n), es la siguiente sucesión infinita de números naturales:

La sucesión comienza con los números 0 y 1. A partir de estos, cada término es la suma de los dos anteriores.

Definir la función

tal que (sumaFibsIndiceImpar n) es la suma de los n primeros términos de la sucesión de Fibonacci no índice impar; es decir,

Por ejemplo,

En los ejemplos anteriores se observa que

Comprobar con QuickCheck que (sumaFibsIndiceImpar n) es F(2n); es decir, el 2n-ésimo número de Fibonacci

Soluciones

Referencia

Pensamiento

El corazón del poeta, tan rico en sonoridades, es casi un insulto a la afonía cordial de la masa.

Antonio Machado

Suma de primos menores

La suma de los primos menores que 10 es 2 + 3 + 5 + 7 = 17.

Definir la función

tal que (sumaPrimosMenores n) es la suma de los primos menores que n. Por ejemplo,

Nota: Este ejercicio está basado en el problema 10 del Proyecto Euler

Soluciones

Pensamiento

El movimiento no es nada esencial. La fuerza puede ser inmóvil (lo es en su estado de pureza); mas no por ello deja de ser activa.

Antonio Machado

Números triangulares

La sucesión de los números triangulares se obtiene sumando los números naturales.

Así, los 5 primeros números triangulares son

Definir la función

tal que triangulares es la lista de los números triangulares. Por ejemplo,

Comprobar con QuickCheck que entre dos números triangulares consecutivos siempre hay un número primo.

Soluciones