Menu Close

Etiqueta: nub

Número como suma de sus dígitos

El número 23 se puede escribir de 4 formas como suma de sus dígitos

   2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3
   2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3
   2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3
   2 + 3 + 3 + 3 + 3 + 3 + 3 + 3

La de menor número de sumando es la última, que tiene 8 sumandos.

Definir las funciones

   minimoSumandosDigitos        :: Integer -> Integer
   graficaMinimoSumandosDigitos :: Integer -> IO ()

tales que

  • (minimoSumandosDigitos n) es el menor número de dígitos de n cuya suma es n. Por ejemplo,
     minimoSumandosDigitos 23    ==  8
     minimoSumandosDigitos 232   ==  78
     minimoSumandosDigitos 2323  ==  775
     map minimoSumandosDigitos [10..20] == [10,11,6,5,5,3,6,5,4,3,10]
  • (graficaMinimoSumandosDigitos n) dibuja la gráfica de (minimoSumandosDigitos k) par los k primeros números naturales. Por ejemplo, (graficaMinimoSumandosDigitos 300) dibuja

Soluciones

import Test.QuickCheck
import Graphics.Gnuplot.Simple
import Data.List (nub, genericLength, sort)
import Data.Array (array, (!))
 
minimoSumandosDigitos :: Integer -> Integer
minimoSumandosDigitos n =
  minimoSumandos (digitos n) n
 
-- (digitos n) es el conjunto de los dígitos no nulos de n. Por ejemplo,
--    digitos 2032  ==  [2,3]
digitos :: Integer -> [Integer]
digitos n =
  nub [read [c] | c <- show n, c /= '0']
 
-- (minimoSumandos xs n) es el menor número de elementos de la lista de
-- enteros positivos xs (con posibles repeticiones) cuya suma es n. Por
-- ejemplo, 
--    minimoSumandos [7,2,4] 11  ==  2
minimoSumandos :: [Integer] -> Integer -> Integer
minimoSumandos xs n =
  minimum (map genericLength (sumas xs n))
 
-- (sumas xs n) es la lista de elementos de la lista de enteros
-- positivos xs (con posibles repeticiones) cuya suma es n. Por ejemplo,  
--    sumas [7,2,4] 11  ==  [[7,2,2],[7,4]]
sumas :: [Integer] -> Integer -> [[Integer]]
sumas [] 0 = [[]]
sumas [] _ = []
sumas (x:xs) n
  | x <= n    = map (x:) (sumas (x:xs) (n-x)) ++ sumas xs n
  | otherwise = sumas xs n
 
-- 2ª solución
-- ===========
 
minimoSumandosDigitos2 :: Integer -> Integer
minimoSumandosDigitos2 n = aux n 
  where
    aux 0 = 0
    aux k = 1 + minimo [aux (k - x) | x <- ds,  k >= x]
    ds    = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- 3ª solución
-- ===========
 
minimoSumandosDigitos3 :: Integer -> Integer
minimoSumandosDigitos3 n = v ! n
  where
    v   = array (0,n) [(i,f i) | i <- [0..n]]
    f 0 = 0
    f k = 1 + minimo [v ! (k - x) | x <- ds, k >= x]
    ds       = digitos n
    infinito = 10^100
    minimo xs | null xs   = infinito
              | otherwise = minimum xs
 
-- Equivalencia de las definiciones
-- ================================
 
-- La propiedad es
prop_minimoSumandosDigitos :: Positive Integer -> Bool
prop_minimoSumandosDigitos (Positive n) =
  r1 == r2 && r2 == r3
  where
    r1 = minimoSumandosDigitos n
    r2 = minimoSumandosDigitos n
    r3 = minimoSumandosDigitos n
 
-- La comprobación es
--    λ> quickCheckWith (stdArgs {maxSize=9}) prop_minimoSumandosDigitos
--    +++ OK, passed 100 tests.
 
-- Definición de graficaMinimoSumandosDigitos
-- ==========================================
 
graficaMinimoSumandosDigitos :: Integer -> IO ()
graficaMinimoSumandosDigitos n =
  plotList [ Key Nothing
           -- , PNG "Numero_como_suma_de_sus_digitos.png"
           ]
           [minimoSumandosDigitos k | k <- [0..n-1]]

Máxima longitud de sublistas crecientes

Definir la función

   longitudMayorSublistaCreciente :: Ord a => [a] -> Int

tal que (longitudMayorSublistaCreciente xs) es la el máximo de las longitudes de las sublistas crecientes de xs. Por ejemplo,

   λ> longitudMayorSublistaCreciente [3,2,6,4,5,1]
   3
   λ> longitudMayorSublistaCreciente [10,22,9,33,21,50,41,60,80]
   6
   λ> longitudMayorSublistaCreciente [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]
   6
   λ> longitudMayorSublistaCreciente [1..2000]
   2000
   λ> longitudMayorSublistaCreciente [2000,1999..1]
   1
   λ> import System.Random
   λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
   λ> longitudMayorSublistaCreciente2 xs
   61
   λ> longitudMayorSublistaCreciente3 xs
   61

Nota: Se puede usar programación dinámica para aumentar la eficiencia.

Soluciones

import Data.List (nub, sort)
import Data.Array (Array, (!), array, elems, listArray)
 
-- 1ª solución
-- ===========
 
longitudMayorSublistaCreciente1 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente1 =
  length . head . mayoresCrecientes
 
-- (mayoresCrecientes xs) es la lista de las sublistas crecientes de xs
-- de mayor longitud. Por ejemplo, 
--    λ> mayoresCrecientes [3,2,6,4,5,1]
--    [[3,4,5],[2,4,5]]
--    λ> mayoresCrecientes [3,2,3,2,3,1]
--    [[2,3],[2,3],[2,3]]
--    λ> mayoresCrecientes [10,22,9,33,21,50,41,60,80]
--    [[10,22,33,50,60,80],[10,22,33,41,60,80]]
--    λ> mayoresCrecientes [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]
--    [[0,4,6,9,13,15],[0,2,6,9,13,15],[0,4,6,9,11,15],[0,2,6,9,11,15]]
mayoresCrecientes :: Ord a => [a] -> [[a]]
mayoresCrecientes xs =
  [ys | ys <- xss
      , length ys == m]
  where xss = sublistasCrecientes xs
        m   = maximum (map length xss)
 
-- (sublistasCrecientes xs) es la lista de las sublistas crecientes de
-- xs. Por ejemplo,
--    λ> sublistasCrecientes [3,2,5]
--    [[3,5],[3],[2,5],[2],[5],[]]
sublistasCrecientes :: Ord a => [a] -> [[a]]
sublistasCrecientes []  = [[]]
sublistasCrecientes (x:xs) =
  [x:ys | ys <- yss, null ys || x < head ys] ++ yss
  where yss = sublistasCrecientes xs
 
-- 2ª solución
-- ===========
 
longitudMayorSublistaCreciente2 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente2 xs =
  longitudSCM xs (sort (nub xs))
 
-- (longitudSCM xs ys) es la longitud de la subsecuencia máxima de xs e
-- ys. Por ejemplo, 
--   longitudSCM "amapola" "matamoscas" == 4
--   longitudSCM "atamos" "matamoscas"  == 6
--   longitudSCM "aaa" "bbbb"           == 0
longitudSCM :: Eq a => [a] -> [a] -> Int
longitudSCM xs ys = (matrizLongitudSCM xs ys) ! (n,m)
  where n = length xs
        m = length ys
 
-- (matrizLongitudSCM xs ys) es la matriz de orden (n+1)x(m+1) (donde n
-- y m son los números de elementos de xs e ys, respectivamente) tal que
-- el valor en la posición (i,j) es la longitud de la SCM de los i
-- primeros elementos de xs y los j primeros elementos de ys. Por ejemplo,
--    λ> elems (matrizLongitudSCM "amapola" "matamoscas")
--    [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,2,2,2,2,2,2,
--     0,1,2,2,2,2,2,2,2,3,3,0,1,2,2,2,2,2,2,2,3,3,0,1,2,2,2,2,3,3,3,3,3,
--     0,1,2,2,2,2,3,3,3,3,3,0,1,2,2,3,3,3,3,3,4,4]
-- Gráficamente,
--       m a t a m o s c a s
--    [0,0,0,0,0,0,0,0,0,0,0,
-- a   0,0,1,1,1,1,1,1,1,1,1,
-- m   0,1,1,1,1,2,2,2,2,2,2,
-- a   0,1,2,2,2,2,2,2,2,3,3,
-- p   0,1,2,2,2,2,2,2,2,3,3,
-- o   0,1,2,2,2,2,3,3,3,3,3,
-- l   0,1,2,2,2,2,3,3,3,3,3,
-- a   0,1,2,2,3,3,3,3,3,4,4]
matrizLongitudSCM :: Eq a => [a] -> [a] -> Array (Int,Int) Int
matrizLongitudSCM xs ys = q
  where
    n = length xs
    m = length ys
    v = listArray (1,n) xs
    w = listArray (1,m) ys
    q = array ((0,0),(n,m)) [((i,j), f i j) | i <- [0..n], j <- [0..m]]
      where f 0 _ = 0
            f _ 0 = 0
            f i j | v ! i == w ! j = 1 + q ! (i-1,j-1)
                  | otherwise      = max (q ! (i-1,j)) (q ! (i,j-1))
 
-- 3ª solución
-- ===========
 
longitudMayorSublistaCreciente3 :: Ord a => [a] -> Int
longitudMayorSublistaCreciente3 xs =
  maximum (elems (vectorlongitudMayorSublistaCreciente xs))
 
-- (vectorlongitudMayorSublistaCreciente xs) es el vector de longitud n
-- (donde n es el tamaño de xs) tal que el valor i-ésimo es la longitud
-- de la sucesión más larga que termina en el elemento i-ésimo de
-- xs. Por ejemplo,  
--    λ> vectorlongitudMayorSublistaCreciente [3,2,6,4,5,1]
--    array (1,6) [(1,1),(2,1),(3,2),(4,2),(5,3),(6,1)]
vectorlongitudMayorSublistaCreciente :: Ord a => [a] -> Array Int Int
vectorlongitudMayorSublistaCreciente xs = v
  where v = array (1,n) [(i,f i) | i <- [1..n]]
        n = length xs
        w = listArray (1,n) xs
        f 1 = 1
        f i | null ls   = 1
            | otherwise = 1 + maximum ls
          where ls = [v ! j | j <-[1..i-1], w ! j < w ! i]
 
-- Comparación de eficiencia
-- =========================
 
--    λ> longitudMayorSublistaCreciente1 [1..20]
--    20
--    (4.60 secs, 597,014,240 bytes)
--    λ> longitudMayorSublistaCreciente2 [1..20]
--    20
--    (0.03 secs, 361,384 bytes)
--    λ> longitudMayorSublistaCreciente3 [1..20]
--    20
--    (0.03 secs, 253,944 bytes)
--    
--    λ> longitudMayorSublistaCreciente2 [1..2000]
--    2000
--    (8.00 secs, 1,796,495,488 bytes)
--    λ> longitudMayorSublistaCreciente3 [1..2000]
--    2000
--    (5.12 secs, 1,137,667,496 bytes)
--    
--    λ> longitudMayorSublistaCreciente1 [1000,999..1]
--    1
--    (0.95 secs, 97,029,328 bytes)
--    λ> longitudMayorSublistaCreciente2 [1000,999..1]
--    1
--    (7.48 secs, 1,540,857,208 bytes)
--    λ> longitudMayorSublistaCreciente3 [1000,999..1]
--    1
--    (0.86 secs, 160,859,128 bytes)
--    
--    λ> longitudMayorSublistaCreciente1 (show (2^300))
--    10
--    (7.90 secs, 887,495,368 bytes)
--    λ> longitudMayorSublistaCreciente2 (show (2^300))
--    10
--    (0.04 secs, 899,152 bytes)
--    λ> longitudMayorSublistaCreciente3 (show (2^300))
--    10
--    (0.04 secs, 1,907,936 bytes)
--    
--    λ> longitudMayorSublistaCreciente2 (show (2^6000))
--    10
--    (0.06 secs, 9,950,592 bytes)
--    λ> longitudMayorSublistaCreciente3 (show (2^6000))
--    10
--    (3.46 secs, 686,929,744 bytes)
--    
--    λ> import System.Random
--    (0.00 secs, 0 bytes)
--    λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
--    (0.02 secs, 1,993,032 bytes)
--    λ> longitudMayorSublistaCreciente2 xs
--    61
--    (7.73 secs, 1,538,771,392 bytes)
--    λ> longitudMayorSublistaCreciente3 xs
--    61
--    (1.04 secs, 212,538,648 bytes)
--    λ> xs <- sequence [randomRIO (0,10^6) | _ <- [1..10^3]]
--    (0.03 secs, 1,993,032 bytes)
--    λ> longitudMayorSublistaCreciente2 xs
--    57
--    (7.56 secs, 1,538,573,680 bytes)
--    λ> longitudMayorSublistaCreciente3 xs
--    57
--    (1.05 secs, 212,293,984 bytes)

Conjuntos de primos emparejables

Un conjunto de primos emparejables es un conjunto S de números primos tales que al concatenar cualquier par de elementos de S se obtiene un número primo. Por ejemplo, {3, 7, 109, 673} es un conjunto de primos emparejables ya que sus elementos son primos y las concatenaciones de sus parejas son 37, 3109, 3673, 73, 7109, 7673, 1093, 1097, 109673, 6733, 6737 y 673109 son primos.

Definir la función

   emparejables :: Integer -> Integer -> [[Integer]]

tal que (emparejables n m) es el conjunto de los conjuntos emparejables de n elementos menores que n. Por ejemplo,

   take 5 (emparejables 2   10)  ==  [[3,7]]
   take 5 (emparejables 3   10)  ==  []
   take 5 (emparejables 2  100)  ==  [[3,7],[3,11],[3,17],[3,31],[3,37]]
   take 5 (emparejables 3  100)  ==  [[3,37,67],[7,19,97]]
   take 5 (emparejables 4  100)  ==  []
   take 5 (emparejables 4 1000)  ==  [[3,7,109,673],[23,311,677,827]]

Hojas con caminos no decrecientes

Los árboles se pueden representar mediante el siguiente tipo de datos

   data Arbol = N Int [Arbol]
     deriving Show

Por ejemplo, los árboles

         1             1             1  
        /  \          / \           / \ 
       /    \        8   3         8   3
      2      6          /|\       /|\  |
     / \    / \        4 2 6     4 5 6 2
    4   5  5   7

se representan por

   ej1, ej2, ej3 :: Arbol
   ej1 = N 1 [N 2 [N 4 [], N 5 []], N 6 [N 5 [], N 7 []]]
   ej2 = N 1 [N 8 [], N 3 [N 4 [], N 2 [], N 6 []]]
   ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 2 []]]

Definir la función

   hojasEnNoDecreciente :: Arbol -> [Int]

tal que (hojasEnNoDecreciente a) es el conjunto de las hojas de a que se encuentran en alguna rama no decreciente. Por ejemplo,

   hojasEnNoDecreciente ej1  ==  [4,5,7]
   hojasEnNoDecreciente ej2  ==  [4,6,8]
   hojasEnNoDecreciente ej3  ==  []

Soluciones

import Data.List (sort, nub)
 
data Arbol = N Int [Arbol]
  deriving Show
 
ej1, ej2, ej3 :: Arbol
ej1 = N 1 [N 2 [N 4 [], N 5 []], N 6 [N 5 [], N 7 []]]
ej2 = N 1 [N 8 [], N 3 [N 4 [], N 2 [], N 6 []]]
ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 2 []]]
 
-- 1ª solución
-- ===========
 
hojasEnNoDecreciente :: Arbol -> [Int]
hojasEnNoDecreciente a =
  sort (nub (map last (ramasNoDecrecientes a)))
 
--    ramasNoDecrecientes ej1  ==  [[1,2,4],[1,2,5],[1,6,7]]
--    ramasNoDecrecientes ej2  ==  [[1,8],[1,3,4],[1,3,6]]
--    ramasNoDecrecientes ej3  ==  []
ramasNoDecrecientes :: Arbol -> [[Int]]
ramasNoDecrecientes a =
  filter esNoDecreciente (ramas a)
 
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
--    λ> ramas ej1
--    [[1,2,4],[1,2,5],[1,6,5],[1,6,7]]
--    λ> ramas ej2
--    [[1,8],[1,3,4],[1,3,2],[1,3,6]]
--    λ> ramas ej3
--    [[1,8,4],[1,8,5],[1,8,6],[1,3,2]]
ramas :: Arbol -> [[Int]]
ramas (N x []) = [[x]]
ramas (N x as) = map (x:) (concatMap ramas as)
 
-- (esNoDecreciente xs) se verifica si la lista xs es no
-- decreciente. Por ejemplo, 
--    esNoDecreciente [1,3,3,5]  ==  True
--    esNoDecreciente [1,3,5,3]  ==  False
esNoDecreciente :: [Int] -> Bool
esNoDecreciente xs =
  and (zipWith (<=) xs (tail xs))
 
-- 2ª solución
-- ===========
 
--    hojasEnNoDecreciente ej1  ==  [4,5,7]
--    hojasEnNoDecreciente ej2  ==  [4,6,8]
--    hojasEnNoDecreciente ej3  ==  []
hojasEnNoDecreciente2 :: Arbol -> [Int]
hojasEnNoDecreciente2 = sort . nub . aux
  where
    aux (N x []) = [x]
    aux (N x as) = concat [aux (N y bs) | (N y bs) <- as, x <= y]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Suma de intervalos

Los intervalos se pueden representar por pares de enteros (a,b) con a < b. Los elementos del intervalo (2,5) son 2, 3, 4 y 5; por tanto, su longitud es 4. Para calcular la suma de los longitudes de una lista de intervalos hay que tener en cuenta que si hay intervalos superpuestos sus elementos deben de contarse sólo una vez. Por ejemplo, la suma de los intervalos de [(1,4),(7,10),(3,5)] es 7 ya que, como los intervalos (1,4) y (3,5) se solapan, los podemos ver como el intervalo (1,5) que tiene una longitud de 4.

Definir la función

   sumaIntervalos :: [(Int, Int)] -> Int

tal que (sumaIntervalos xs) es la suma de las longitudes de los intervalos de xs contando los superpuestos sólo una vez. Por ejemplo,

   sumaIntervalos [(1, 5)]                  == 4
   sumaIntervalos [(0,1), (-1,0)]           == 2
   sumaIntervalos [(0,1), (0,2), (1,2)]     == 2     
   sumaIntervalos [(1, 5), (6, 10)]         == 8
   sumaIntervalos [(1, 5), (5, 10)]         == 9
   sumaIntervalos [(1, 5), (1, 5)]          == 4
   sumaIntervalos [(1, 4), (7, 10), (3, 5)] == 7

Soluciones

import Data.List (nub, sort)
 
-- 1ª solución
sumaIntervalos :: [(Int, Int)] -> Int
sumaIntervalos = aux . sort
  where aux [] = 0
        aux [(a,b)] = b - a
        aux ((a,b):(c,d):xs) | b < c     = b - a + aux ((c,d):xs)
                             | otherwise = aux ((a,max b d):xs)
 
-- 2ª solución
sumaIntervalos2 :: [(Int, Int)] -> Int
sumaIntervalos2 = length . nub . concatMap f
  where f (a, b) = [a..b - 1]

Otras soluciones

  • Se pueden escribir otras soluciones en los comentarios.
  • El código se debe escribir entre una línea con <pre lang="haskell"> y otra con </pre>

Pensamiento

“Si la gente no cree que las matemáticas son simples, es sólo porque no se dan cuenta de lo complicada que es la vida.”

John von Neumann.