Caminos minimales en un árbol numérico

En la librería Data.Tree se definen los tipos de árboles y bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u.v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que
+ (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Pensamiento

Tras el vivir y el soñar,
está lo que más importa:
despertar.

Antonio Machado

Combinaciones divisibles

Definir la función

tal que (tieneCombinacionDivisible xs m) se verifica si existe alguna forma de combinar todos los elementos de la lista (con las operaciones suma o resta) de forma que el resultado sea divisible por m. Por ejemplo,

En el primer ejemplo, 1 – 2 + 3 + 4 + 6 = 12 es una combinación divisible por 4. En el segundo ejemplo, las combinaciones de [1,3,9] son

y ninguna de las 4 es divisible por 2.

Soluciones

Pensamiento

El que espera desespera,
dice la voz popular.
¡Qué verdad tan verdadera!
La verdad es lo que es,
y sigue siendo verdad
aunque se piense al revés.

Antonio Machado

Ternas euclídeas

Uno de los problemas planteados por Euclides en los Elementos consiste en encontrar tres números tales que cada uno de sus productos, dos a dos, aumentados en la unidad sea un cuadrado perfecto.

Diremos que (x,y,z) es una terna euclídea si es una solución del problema; es decir, si x <= y <= z y xy+1, yz+1 y zx+1 son cuadrados. Por ejemplo, (4,6,20) es una terna euclídea ya que

Definir la funciones

tales que

  • ternasEuclideas es la lista de las ternas euclídeas. Por ejemplo,

  • (esMayorDeTernaEuclidea z) se verifica si existen x, y tales que (x,y,z) es una terna euclídea. Por ejemplo,

Comprobar con QuickCheck que z es el mayor de una terna euclídea si, y sólo si, existe un número natural x tal que 1 < x < z – 1 y x^2 es congruente con 1 módulo z.

Soluciones

Pensamiento

Todo pasa y todo queda,
pero lo nuestro es pasar,
pasar haciendo caminos,
caminos sobre la mar.

Antonio Machado

Triángulo de Pascal binario

Los triángulos binarios de Pascal se formas a partir de una lista de ceros y unos usando las reglas del triángulo de Pascal, donde cada uno de los números es suma módulo dos de los dos situados en diagonal por encima suyo. Por ejemplo, los triángulos binarios de Pascal correspondientes a [1,0,1,1,1] y [1,0,1,1,0] son

Sus finales, desde el extremo inferior al extremos superior derecho, son [0,1,0,0,1] y [1,0,1,1,0], respectivamente.

Una lista es Pascal capicúa si es igual a los finales de su triángulo binario de Pascal. Por ejemplo, [1,0,1,1,0] es Pascal capicúa.

Definir las funciones

tales que

  • (trianguloPascalBinario xs) es el triágulo binario de Pascal correspondiente a la lista xs. Por ejemplo,

  • (pascalCapicuas n) es la lista de listas de Pascal capicúas de n elementos. Por ejemplo,

  • (nPascalCapicuas n) es el número de listas de Pascal capicúas de n elementos. Por ejemplo,

Soluciones

Pensamiento

La envidia de la virtud
hizo a Caín criminal.
¡Gloria a Caín! Hoy el vicio
es lo que se envidia más.

Antonio Machado

Números con dígitos 1 y 2

Definir las funciones

tales que

  • (numerosCon1y2 n) es la lista ordenada de números de n dígitos que se pueden formar con los dígitos 1 y 2. Por ejemplo,

  • (restosNumerosCon1y2 n) es la lista de los restos de dividir los elementos de (restosNumerosCon1y2 n) entre 2^n. Por ejemplo,

  • (graficaRestosNumerosCon1y2 n) dibuja la gráfica de los restos de dividir los elementos de (restosNumerosCon1y2 n) entre 2^n. Por ejemplo, (graficaRestosNumerosCon1y2 3) dibuja

(graficaRestosNumerosCon1y2 4) dibuja

y (graficaRestosNumerosCon1y2 5) dibuja

Nota: En la definición usar la función plotListStyle y como su segundo argumento (el PloStyle) usar

Comprobar con QuickCheck que todos los elementos de (restosNumerosCon1y2 n) son distintos.

Soluciones

Pensamiento

¿Para qué llamar caminos
a los surcos del azar? …
Todo el que camina anda,
como Jesús, sobre el mar.

Antonio Machado

Números altamente compuestos

Un número altamente compuesto es un entero positivo con más divisores que cualquier entero positivo más pequeño. Por ejemplo,

  • 4 es un número altamente compuesto porque es el menor con 3 divisores,
  • 5 no es altamente compuesto porque tiene menos divisores que 4 y
  • 6 es un número altamente compuesto porque es el menor con 4 divisores,

Los primeros números altamente compuestos son

Definir las funciones

tales que

  • (esAltamanteCompuesto x) se verifica si x es altamente compuesto. Por ejemplo,

  • altamente compuestos es la sucesión de los números altamente compuestos. Por ejemplo,

  • (graficaAltamenteCompuestos n) dibuja la gráfica de los n primeros números altamente compuestos. Por ejemplo, (graficaAltamenteCompuestos 25) dibuja

Soluciones

Pensamiento

Nuestras horas son minutos
cuando esperamos saber,
y siglos cuando sabemos
lo que se puede aprender.

Antonio Machado

El 2019 es semiprimo

Un número semiprimo es un número natural que es producto de dos números primos no necesariamente distintos. Por ejemplo, 26 es semiprimo (porque 26 = 2×13) y 49 también lo es (porque 49 = 7×7).

Definir las funciones

tales que

  • (esSemiprimo n) se verifica si n es semiprimo. Por ejemplo,

  • semiprimos es la sucesión de números semiprimos. Por ejemplo,

Soluciones

Pensamiento

Porque toda visión requiere distancia, no hay manera de ver las cosas sin salirse de ellas.

Antonio Machado

El 2019 es malvado

Un número malvado es un número natural cuya expresión en base 2 contiene un número par de unos. Por ejemplo, 6 es malvado porque su expresión en base 2 es 110 que tiene dos unos.

Definir las funciones

tales que

  • (esMalvado n) se verifica si n es un número malvado. Por ejemplo,

  • malvados es la sucesión de los números malvados. Por ejemplo,

  • (posicionMalvada n) es justo la posición de n en la sucesión de números malvados, si n es malvado o Nothing, en caso contrario. Por ejemplo,

Soluciones

Pensamiento

… Yo os enseño, o pretendo enseñaros a que dudéis de todo: de lo
humano y de lo divino, sin excluir vuestra propia existencia.

Antonio Machado

El teorema de Navidad de Fermat

El 25 de diciembre de 1640, en una carta a Mersenne, Fermat demostró la conjetura de Girard: todo primo de la forma 4n+1 puede expresarse de manera única como suma de dos cuadrados. Por eso es conocido como el teorema de Navidad de Fermat.

Definir las funciones

tales que

  • (representaciones n) es la lista de pares de números naturales (x,y) tales que n = x^2 + y^2 con x <= y. Por ejemplo.

  • primosImparesConRepresentacionUnica es la lista de los números primos impares que se pueden escribir exactamente de una manera como suma de cuadrados de pares de números naturales (x,y) con x <= y. Por ejemplo,

  • primos4nM1 es la lista de los números primos que se pueden escribir como uno más un múltiplo de 4 (es decir, que son congruentes con 1 módulo 4). Por ejemplo,

Comprobar con QuickCheck el torema de Navidad de Fermat; es decir, que para todo número n, los n-ésimos elementos de primosImparesConRepresentacionUnica y de primos4nM1 son iguales.

Soluciones

Pensamiento

– ¡Cuándo llegará otro día!
– Hoy es siempre todavía.

Antonio Machado

Árbol de subconjuntos

Se dice que A es un subconjunto maximal de B si A ⊂ B y no existe ningún C tal que A ⊂ C y C ⊂ B. Por ejemplo, {2,5} es un subconjunto maximal de {2,3,5], pero {3] no lo es.

El árbol de los subconjuntos de un conjunto A es el árbol que tiene como raíz el conjunto A y cada nodo tiene como hijos sus subconjuntos maximales. Por ejemplo, el árbol de subconjuntos de [2,3,5] es

Usando el tipo de dato

el árbol anterior se representa por

Definir las funciones

tales que

  • (arbolSubconjuntos x) es el árbol de los subconjuntos de xs. Por ejemplo,

  • (nOcurrenciasArbolSubconjuntos xs ys) es el número de veces que aparece el conjunto xs en el árbol de los subconjuntos de ys. Por ejemplo,

Comprobar con QuickChek que, para todo entero positivo n, el número de ocurrencia de un subconjunto xs de [1..n] en el árbol de los subconjuntos de [1..n] es el factorial de n-k (donde k es el número de elementos de xs).

Soluciones

Pensamiento

Nunca traces tu frontera,
ni cuides de tu perfil;
todo eso es cosa de fuera.

Antonio Machado

Tablas de operaciones binarias

Para representar las operaciones binarias en un conjunto finito A con n elementos se pueden numerar sus elementos desde el 0 al n-1. Entonces cada operación binaria en A se puede ver como una lista de listas xss tal que el valor de aplicar la operación a los elementos i y j es el j-ésimo elemento del i-ésimo elemento de xss. Por ejemplo, si A = {0,1,2} entonces las tabla de la suma y de la resta módulo 3 en A son

Definir las funciones

tales que

  • (tablaOperacion f n) es la tabla de la operación f módulo n en [0..n-1]. Por ejemplo,

  • (tablaSuma n) es la tabla de la suma módulo n en [0..n-1]. Por ejemplo,

  • (tablaResta n) es la tabla de la resta módulo n en [0..n-1]. Por ejemplo,

  • (tablaProducto n) es la tabla del producto módulo n en [0..n-1]. Por ejemplo,

Comprobar con QuickCheck, si parato entero positivo n de verificar las siguientes propiedades:

  • La suma, módulo n, de todos los números de (tablaSuma n) es 0.
  • La suma, módulo n, de todos los números de (tablaResta n) es 0.
  • La suma, módulo n, de todos los números de (tablaProducto n) es n/2 si n es el doble de un número impar y es 0, en caso contrario.

Soluciones

Pensamiento

¿Tu verdad? No, la Verdad,
y ven conmigo a buscarla.
La tuya guárdatela.

Antonio Machado

Divisores compuestos

Definir la función

tal que (divisoresCompuestos x) es la lista de los divisores de x que son números compuestos (es decir, números mayores que 1 que no son primos). Por ejemplo,

Soluciones

Pensamiento

«La verdad del hombre empieza donde acaba su propia tontería, pero la
tontería del hombre es inagotable.»

Antonio Machado

Divisores propios maximales

Se dice que a es un divisor propio maximal de un número b si a es un divisor de b distinto de b y no existe ningún número c tal que a < c < b, a es un divisor de c y c es un divisor de b. Por ejemplo, 15 es un divisor propio maximal de 30, pero 5 no lo es.

Definir las funciones

tales que

  • (divisoresPropiosMaximales x) es la lista de los divisores propios maximales de x. Por ejemplo,

  • (nDivisoresPropiosMaximales x) es el número de divisores propios maximales de x. Por ejemplo,

Soluciones

Pensamiento

«Moneda que está en la mano
quizá se deba guardar;
la monedita del alma
se pierde si no se da.»

Antonio Machado

Entre dos conjuntos

Se dice que un x número se encuentra entre dos conjuntos xs e ys si x es divisible por todos los elementos de xs y todos los elementos de zs son divisibles por x. Por ejemplo, 12 se encuentra entre los conjuntos {2, 6} y {24, 36}.

Definir la función

tal que (entreDosConjuntos xs ys) es la lista de elementos entre xs e ys (se supone que xs e ys son listas no vacías de números enteros positivos). Por ejemplo,

Otros ejemplos

Soluciones

Referencia

Este ejercicio está basado en el problema Between two sets de HackerRank.

Pensamiento

Las razones no se transmiten, se engendran, por cooperación, en el diálogo.

Antonio Machado

Grafo de divisibilidad

El grafo de divisibilidad de orden n es el grafo cuyos nodos son los números naturales entre 1 y n, cuyas aristas son los pares (x,y) tales que x divide a y o y divide a x. El coste de cada arista es el cociente entre su mayor y menor elemento.

Definir las siguientes funciones:

tales que

  • (grafoDivisibilidad n) es el grafo de divisibilidad de orden n. Por ejemplo,

  • (coste n) es el coste del árbol de expansión mínimo del grafo de divisibilidad de orden n. Por ejemplo,

Soluciones

Múltiplos repitunos

El ejercicio 4 de la Olimpiada Matemáticas de 1993 es el siguiente:

Demostrar que para todo número primo p distinto de 2 y de 5, existen infinitos múltiplos de p de la forma 1111……1 (escrito sólo con unos).

Definir la función

tal que (multiplosRepitunos p n) es la lista de los múltiplos repitunos de p (es decir, de la forma 1111…1 escrito sólo con unos), donde p es un número primo distinto de 2 y 5. Por ejemplo,

Comprobar con QuickCheck que para todo primo p mayor que 5 y todo número entero positivo n, existe un mútiplo repituno de p mayor que n.

Soluciones

La sucesión de Sylvester

La sucesión de Sylvester es la sucesión que comienza en 2 y sus restantes términos se obtienen multiplicando los anteriores y sumándole 1.

Definir las funciones

tales que

  • (sylvester n) es el n-ésimo término de la sucesión de Sylvester. Por ejemplo,

  • (graficaSylvester d n) dibuja la gráfica de los d últimos dígitos de los n primeros términos de la sucesión de Sylvester. Por ejemplo,
    • (graficaSylvester 3 30) dibuja
      La_sucesion_de_Sylvester_(3,30)
    • (graficaSylvester 4 30) dibuja
      La_sucesion_de_Sylvester_(4,30)
    • (graficaSylvester 5 30) dibuja
      La_sucesion_de_Sylvester_(5,30)

Soluciones

Suma de las sumas de los cuadrados de los divisores

La suma de las sumas de los cuadrados de los divisores de los 6 primeros números enteros positivos es

Definir la función

tal que (sumaSumasCuadradosDivisores n) es la suma de las sumas de los cuadrados de los divisores de los n primeros números enteros positivos. Por ejemplo,

Soluciones

Suma de los dígitos de las repeticiones de un número

Dados dos números naturales n y x, su suma reducida se obtiene a partir del número obtenido repitiendo n veces el x sumando sus dígitos hasta obtener un número con sólo un dígito. Por ejemplo, si n es 3 y x es 24 las transformaciones son

Análogamente, si n es 4 y x es 7988 las transformaciones son

Definir las funciones

tales que

  • (sumaReducidaDigitosRepeticiones n x) es la suma reducida de n repeticiones de x. Por ejemplo

  • (grafica n) dibuja la gráfica de los n primeros elementos de la sucesión cuyo elementos k-ésimo es (sumaReducidaDigitosRepeticiones k k). Por ejemplo, (grafica 50) dibuja
    Suma_de_los_digitos_de_las_repeticiones_de_un_numero50

Soluciones

Números cuyos factoriales son divisibles por x pero no por y

Hay 3 números (el 2, 3 y 4) cuyos factoriales son divisibles por 2 pero no por 5. Análogamente, hay números 5 (el 5, 6, 7, 8, 9) cuyos factoriales son divisibles por 15 pero no por 25.

Definir la función

tal que (nNumerosConFactorialesDivisibles x y) es la cantidad de números cuyo factorial es divisible por x pero no por y. Por ejemplo,

Soluciones

La función de Smarandache

La función de Smarandache, también conocida como la función de Kempner, es la función que asigna a cada número entero positivo n el menor número cuyo factorial es divisible por n y se representa por S(n). Por ejemplo, el número 8 no divide a 1!, 2!, 3!, pero sí divide 4!; por tanto, S(8) = 4.

Definir las funciones

tales que

  • (smarandache n) es el menor número cuyo factorial es divisible por n. Por ejemplo,

  • (graficaSmarandache n) dibuja la gráfica de los n primeros términos de la sucesión de Smarandache. Por ejemplo, (graficaSmarandache 100) dibuja
    La_funcion_de_Smarandache_100
    (graficaSmarandache 500) dibuja
    La_funcion_de_Smarandache_500

Soluciones

Períodos de Fibonacci

Los primeros términos de la sucesión de Fibonacci son

Al calcular sus restos módulo 3 se obtiene

Se observa que es periódica y su período es

Definir las funciones

tales que

  • (fibsMod n) es la lista de los términos de la sucesión de Fibonacci módulo n. Por ejemplo,

  • (periodoFibMod n) es la parte perioica de la sucesión de Fibonacci módulo n. Por ejemplo,

  • longPeriodosFibMod es la sucesión de las longitudes de los períodos de las sucesiones de Fibonacci módulo n, para n > 0. Por ejemplo,

  • (graficaLongPeriodosFibMod n) dibuja la gráfica de los n primeros términos de la sucesión longPeriodosFibMod. Por ejemplo, (graficaLongPeriodosFibMod n) dibuja
    Periodos_de_Fibonacci 300

Soluciones

Celdas interiores de una retícula

Las celdas de una retícula cuadrada se numeran consecutivamente. Por ejemplo, la numeración de la retícula cuadrada de lado 4 es

Los números de sus celdas interiores son 6,7,10,11.

Definir la función

tal que (interiores n) es la lista de los números de las celdas interiores de la retícula cuadrada de lado n. Por ejemplo,

Comprobar con QuickCheck que el número de celdas interiores de la retícula cuadrada de lado n, con n > 1, es (n-2)^2.

Soluciones

Fractal hexagonal

Escribir, usando CodeWorld, un programa para dibujar el fractal hexagonal que se muestra en la siguiente animación
Fractal_hexagonal

Las 4 primeras fases de la animación son

  • Fase 0:
    Fractal_hexagonal_0
  • Fase 1:
    Fractal_hexagonal_1
  • Fase 2:
    Fractal_hexagonal_2
  • Fase 3:
    Fractal_hexagonal_3

Nota: Este ejercicio ha sido propuesto por Agustín Martín Aguera.

Soluciones

Números malvados y odiosos

Un número malvado es un número natural cuya expresión en base 2 (binaria) contiene un número par de unos.

Un número odioso es un número natural cuya expresión en base 2 (binaria) contiene un número impar de unos.

Podemos representar los números malvados y odiosos mediante el siguiente tipo de dato

Definir la función

tal que (malvadoOdioso n) devuelve el tipo de número que es n. Por ejemplo,

Nota: Este ejercicio ha sido propuesto por Ángel Ruiz Campos.

Soluciones

Factorial módulo

Definir la función

tal que (factorialMod n x) es el factorial de x módulo n. Por ejemplo,

Soluciones

Rotaciones divisibles por 8

Las rotaciones de 928160 son 928160, 281609, 816092, 160928, 609281 y 92816 de las que 3 son divisibles por 8 (928160, 160928 y 92816).

Definir la función

tal que (nRotacionesDivisiblesPor8 x) es el número de rotaciones de x divisibles por 8. Por ejemplo,

Soluciones

Menor con suma de dígitos dada

Definir la función

tal que (minSumDig n) es el menor número x tal que la suma de los dígitos de x es n. Por ejemplo,

Soluciones

Caminos minimales en un árbol numérico

En la librería Data.Tree se definen los árboles y los bosques como sigue

Se pueden definir árboles. Por ejemplo,

Y se pueden dibujar con la función drawTree. Por ejemplo,

Los mayores divisores de un número x son los divisores u tales que u > 1 y existe un v tal que 1 < v < u y u*v = x. Por ejemplo, los mayores divisores de 24 son 12, 8 y 6.

El árbol de los predecesores y mayores divisores de un número x es el árbol cuya raíz es x y los sucesores de cada nodo y > 1 es el conjunto formado por y-1 junto con los mayores divisores de y. Los nodos con valor 1 no tienen sucesores. Por ejemplo, el árbol de los predecesores y mayores divisores del número 6 es

Definir las siguientes funciones

tales que

  • (mayoresDivisores x) es la lista de los mayores divisores de x. Por ejemplo,

  • (arbol x) es el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminos x) es la lista de los caminos en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

  • (caminosMinimales x) es la lista de los caminos en de menor longitud en el árbol de los predecesores y mayores divisores del número x. Por ejemplo,

Soluciones

Pares definidos por su MCD y su MCM

Definir las siguientes funciones

tales que

  • (pares a b) es la lista de los pares de números enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

  • (nPares a b) es el número de pares de enteros positivos tales que su máximo común divisor es a y su mínimo común múltiplo es b. Por ejemplo,

Soluciones